Spaces:
Sleeping
Sleeping
rushidarge
commited on
Commit
·
199b89f
1
Parent(s):
256a345
Upload 8 files
Browse files- app.py +128 -0
- output/bert_acc_src.pickle +3 -0
- output/count_vector_step_1.pkl +3 -0
- output/count_vector_step_2.pkl +3 -0
- output/fewer_class_dictionary.pkl +3 -0
- output/lr_basemodel_step_2.pickle +3 -0
- output/lr_step_1.pickle +3 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
import joblib
|
5 |
+
import re
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import re
|
9 |
+
import string
|
10 |
+
from string import digits
|
11 |
+
from sklearn import metrics
|
12 |
+
import pickle
|
13 |
+
import time
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
|
16 |
+
# Create a Streamlit app
|
17 |
+
st.title("Text Classification and Excel Processing App")
|
18 |
+
|
19 |
+
# File upload for Excel file
|
20 |
+
uploaded_file = st.file_uploader("Upload an Excel file", type=["xlsx"])
|
21 |
+
|
22 |
+
def pre_processing(data_frame):
|
23 |
+
|
24 |
+
# Lowercase all characters
|
25 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: x.lower())
|
26 |
+
|
27 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"won\'t", "will not", x))
|
28 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"can\'t", "can not", x))
|
29 |
+
|
30 |
+
# general
|
31 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"n\'t", " not", x))
|
32 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'re", " are", x))
|
33 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'s", " is", x))
|
34 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'d", " would", x))
|
35 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'ll", " will", x))
|
36 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'t", " not", x))
|
37 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'ve", " have", x))
|
38 |
+
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'m", " am", x))
|
39 |
+
|
40 |
+
# Remove quotes
|
41 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: re.sub("'", '', x))
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
exclude = set(string.punctuation) # Set of all special characters
|
46 |
+
# Remove all the special characters
|
47 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: ''.join(ch for ch in x if ch not in exclude))
|
48 |
+
|
49 |
+
|
50 |
+
# Remove all numbers from text
|
51 |
+
remove_digits = str.maketrans('', '', digits)
|
52 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: x.translate(remove_digits))
|
53 |
+
|
54 |
+
|
55 |
+
# remove extra
|
56 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: re.sub('[-_.:;\[\]\|,]', '', x))
|
57 |
+
|
58 |
+
|
59 |
+
# Remove extra spaces
|
60 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: x.strip())
|
61 |
+
|
62 |
+
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: re.sub(" +", " ", x))
|
63 |
+
|
64 |
+
return data_frame
|
65 |
+
|
66 |
+
step_1_model_path = "output/lr_step_1.pickle"
|
67 |
+
step_2_model_path = "output/lr_basemodel_step_2.pickle"
|
68 |
+
|
69 |
+
step_1_model = pickle.load(open(step_1_model_path, 'rb'))
|
70 |
+
step_2_model = pickle.load(open(step_2_model_path, 'rb'))
|
71 |
+
count_vector_step_1 = joblib.load("output/count_vector_step_1.pkl")
|
72 |
+
count_vector_step_2 = joblib.load("output/count_vector_step_2.pkl")
|
73 |
+
fewer_class_dict = joblib.load("output/fewer_class_dictionary.pkl")
|
74 |
+
acc_src_model = joblib.load("output/bert_acc_src.pickle")
|
75 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def predict(model_1,model_2,final_dict,query):
|
80 |
+
# predict
|
81 |
+
|
82 |
+
test_1 = count_vector_step_1.transform([query])
|
83 |
+
y_pred = model_1.predict(test_1)
|
84 |
+
if y_pred == 'med':
|
85 |
+
test_2 = count_vector_step_2.transform([query])
|
86 |
+
y_pred = model_2.predict(test_2)
|
87 |
+
else:
|
88 |
+
y_pred = y_pred
|
89 |
+
|
90 |
+
if query in final_dict.keys():
|
91 |
+
y_pred = final_dict[query]
|
92 |
+
else:
|
93 |
+
y_pred = y_pred
|
94 |
+
|
95 |
+
return y_pred[0]
|
96 |
+
|
97 |
+
if uploaded_file is not None:
|
98 |
+
# Read the uploaded Excel file
|
99 |
+
excel_data = pd.read_excel(uploaded_file)
|
100 |
+
|
101 |
+
|
102 |
+
final_result= []
|
103 |
+
print('Preprocessing Started')
|
104 |
+
test_data = pre_processing(excel_data)
|
105 |
+
x_test = test_data['Claim Description']
|
106 |
+
print('Prediction Started')
|
107 |
+
for query in x_test:
|
108 |
+
result = predict(step_1_model,step_2_model,fewer_class_dict,query)
|
109 |
+
final_result.append(result)
|
110 |
+
excel_data['predicted_coverage_code'] = final_result
|
111 |
+
|
112 |
+
|
113 |
+
X_bert_enc = model.encode(x_test.values, show_progress_bar=True,)
|
114 |
+
accident_source_pred = acc_src_model.predict(X_bert_enc)
|
115 |
+
excel_data['predicted_accident_src'] = accident_source_pred
|
116 |
+
|
117 |
+
# Create a new Excel file with the processed data
|
118 |
+
output_filename = "processed_data.xlsx"
|
119 |
+
excel_data.to_excel(output_filename, index=False)
|
120 |
+
|
121 |
+
# Display a link to download the processed file
|
122 |
+
st.markdown(f"Download Processed Data: [Processed Data](data:{output_filename})")
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
# Add a placeholder for displaying "Done" after processing
|
127 |
+
if uploaded_file is not None:
|
128 |
+
st.write("Done")
|
output/bert_acc_src.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dfe6bea7e8b9bee7801f0653dd191b2b030f512ef4b05624e2112011282ca60
|
3 |
+
size 969252
|
output/count_vector_step_1.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db058f56e2185939cb35485acc242922e440365b06845dea9558dda5238585e1
|
3 |
+
size 1111318
|
output/count_vector_step_2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0eea35f3601237ec71bf083d1bb9a548878f7ebc48649b784c87cd244c445712
|
3 |
+
size 136198
|
output/fewer_class_dictionary.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf4ede12a0d37cef25165d6b32de7a60057129d98c346395ee5ee8cf2220490
|
3 |
+
size 1959
|
output/lr_basemodel_step_2.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85c831ca28039a004d57ca37e8b1a94a9b68863361ae9bfa997958e3b87922c7
|
3 |
+
size 2152799
|
output/lr_step_1.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9e7eceb902734e3f2050789c4565b3f91be4a2d9477b444b2c58c988e9eb269
|
3 |
+
size 8070547
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib 1.1.0
|
2 |
+
numpy 1.21.5
|
3 |
+
pandas 1.4.4
|
4 |
+
regex 2022.7.9
|
5 |
+
scikit-image 0.19.2
|
6 |
+
scikit-learn 1.0.2
|
7 |
+
scikit-learn-intelex 2021.20221004.171935
|
8 |
+
scipy 1.9.1
|
9 |
+
Scrapy 2.6.2
|
10 |
+
sentence-transformers 2.2.2
|
11 |
+
streamlit 1.28.0
|
12 |
+
tokenizers 0.14.1
|
13 |
+
tqdm 4.64.1
|
14 |
+
transformers 4.34.1
|