File size: 2,462 Bytes
d36bbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
os.system('pip install -q git+https://github.com/huggingface/transformers.git')
os.system('pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
import torch
import gradio as gr
import re
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class GUI:
    def query(self,query,modelo="flan-t5-small",tokens=100):
        options=""
        tok_len=tokens
        t5query = f"""Question: "{query}" Context: {options}"""        
        if (modelo=="flan-t5-small" or modelo=="flan-t5-large"):
           tokenizer = AutoTokenizer.from_pretrained("google/{}".format(modelo))
           model = AutoModelForSeq2SeqLM.from_pretrained("google/{}".format(modelo)).to(device)
           inputs = tokenizer(t5query, return_tensors="pt").to(device)
           outputs = model.generate(**inputs, max_new_tokens=tok_len)
        else:
            model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M").to(device)
            tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
            input_ids = tokenizer(t5query, return_tensors="pt").to(device) 
            outputs = model.generate(**input_ids, do_sample=True, max_length=tok_len) 
        generation=tokenizer.batch_decode(outputs, skip_special_tokens=True)
        
        return '\n'.join(generation)
    def begin(self,question,modelo,tokens):
        results = app.query(question,tokens)
        return results

app = GUI()
title = "Get answers with questions with Flan-T5"
description = "Results will show up in a few seconds."
article="More info  <a href='https://ruslanmv.com/'>ruslanmv.com</a><br>" 
css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=app.begin, 
                     inputs=[ gr.Textbox(label="Question"),
                     gr.Radio(["flan-t5-small", "flan-t5-large","gpt-neo-125M"],label="Model",value="flan-t5-small"),
                     gr.Slider(30, 200, value=100, step = 1,label="Max Tokens"),],
                     outputs = gr.Text(label="Answer Summary"),
                     title=title,
                     description=description,
                     article=article,
                     css=css,
                     analytics_enabled = True
                    ,enable_queue=True)
iface.launch(inline=False, share=False, debug=False)