Spaces:
Runtime error
Runtime error
"""Provide a text query describing what you are looking for and get back out images with links!""" | |
import argparse | |
import logging | |
import os | |
import wandb | |
import gradio as gr | |
from pathlib import Path | |
from typing import Callable, Dict, List, Tuple | |
from PIL.Image import Image | |
print(__file__) | |
import fashion_aggregator.fashion_aggregator as fa | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # do not use GPU | |
logging.basicConfig(level=logging.INFO) | |
DEFAULT_APPLICATION_NAME = "fashion-aggregator" | |
APP_DIR = Path(__file__).resolve().parent # what is the directory for this application? | |
FAVICON = APP_DIR / "t-shirt_1f455.png" # path to a small image for display in browser tab and social media | |
README = APP_DIR / "README.md" # path to an app readme file in HTML/markdown | |
DEFAULT_PORT = 11700 | |
# Download image embeddings | |
api = wandb.Api() | |
artifact = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v0") | |
artifact.download("fashion_aggregator/artifacts/img-embeddings") | |
def main(args): | |
predictor = PredictorBackend(url=args.model_url) | |
frontend = make_frontend(predictor.run, flagging=args.flagging, gantry=args.gantry, app_name=args.application) | |
frontend.launch( | |
server_name="0.0.0.0", # make server accessible, binding all interfaces # noqa: S104 | |
server_port=args.port, # set a port to bind to, failing if unavailable | |
share=True, # should we create a (temporary) public link on https://gradio.app? | |
favicon_path=FAVICON, # what icon should we display in the address bar? | |
) | |
def make_frontend( | |
fn: Callable[[Image], str], flagging: bool = False, gantry: bool = False, app_name: str = "fashion-aggregator" | |
): | |
"""Creates a gradio.Interface frontend for text to image search function.""" | |
allow_flagging = "never" | |
readme = _load_readme(with_logging=allow_flagging == "manual") | |
# build a basic browser interface to a Python function | |
frontend = gr.Interface( | |
fn=fn, # which Python function are we interacting with? | |
outputs=gr.Gallery(label="Relevant Items"), | |
# what input widgets does it need? we configure an image widget | |
inputs=gr.components.Textbox(label="Item Description"), | |
title="π Text2Image π", # what should we display at the top of the page? | |
thumbnail=FAVICON, # what should we display when the link is shared, e.g. on social media? | |
description=__doc__, # what should we display just above the interface? | |
article=readme, # what long-form content should we display below the interface? | |
cache_examples=False, # should we cache those inputs for faster inference? slows down start | |
allow_flagging=allow_flagging, # should we show users the option to "flag" outputs? | |
flagging_options=["incorrect", "offensive", "other"], # what options do users have for feedback? | |
) | |
return frontend | |
class PredictorBackend: | |
"""Interface to a backend that serves predictions. | |
To communicate with a backend accessible via a URL, provide the url kwarg. | |
Otherwise, runs a predictor locally. | |
""" | |
def __init__(self, url=None): | |
if url is not None: | |
self.url = url | |
self._predict = self._predict_from_endpoint | |
else: | |
model = fa.Retriever() | |
self._predict = model.predict | |
self._search_images = model.search_images | |
def run(self, text: str): | |
pred, metrics = self._predict_with_metrics(text) | |
self._log_inference(pred, metrics) | |
return pred | |
def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]: | |
paths_and_scores = self._search_images(text) | |
metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])} | |
return paths_and_scores["path"], metrics | |
def _log_inference(self, pred, metrics): | |
for key, value in metrics.items(): | |
logging.info(f"METRIC {key} {value}") | |
logging.info(f"PRED >begin\n{pred}\nPRED >end") | |
def _load_readme(with_logging=False): | |
with open(README) as f: | |
lines = f.readlines() | |
if not with_logging: | |
lines = lines[: lines.index("<!-- logging content below -->\n")] | |
readme = "".join(lines) | |
return readme | |
def _make_parser(): | |
parser = argparse.ArgumentParser(description=__doc__) | |
parser.add_argument( | |
"--model_url", | |
default=None, | |
type=str, | |
help="Identifies a URL to which to send image data. Data is base64-encoded, converted to a utf-8 string, and then set via a POST request as JSON with the key 'image'. Default is None, which instead sends the data to a model running locally.", | |
) | |
parser.add_argument( | |
"--port", | |
default=DEFAULT_PORT, | |
type=int, | |
help=f"Port on which to expose this server. Default is {DEFAULT_PORT}.", | |
) | |
parser.add_argument( | |
"--flagging", | |
action="store_true", | |
help="Pass this flag to allow users to 'flag' model behavior and provide feedback.", | |
) | |
parser.add_argument( | |
"--gantry", | |
action="store_true", | |
help="Pass --flagging and this flag to log user feedback to Gantry. Requires GANTRY_API_KEY to be defined as an environment variable.", | |
) | |
parser.add_argument( | |
"--application", | |
default=DEFAULT_APPLICATION_NAME, | |
type=str, | |
help=f"Name of the Gantry application to which feedback should be logged, if --gantry and --flagging are passed. Default is {DEFAULT_APPLICATION_NAME}.", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = _make_parser() | |
args = parser.parse_args() | |
main(args) | |