saeki commited on
Commit
e23163d
·
1 Parent(s): a9849ea
hifigan/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 Jungil Kong
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
hifigan/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .models import Generator
2
+
3
+
4
+ class AttrDict(dict):
5
+ def __init__(self, *args, **kwargs):
6
+ super(AttrDict, self).__init__(*args, **kwargs)
7
+ self.__dict__ = self
hifigan/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (588 Bytes). View file
 
hifigan/__pycache__/models.cpython-38.pyc ADDED
Binary file (4.54 kB). View file
 
hifigan/config_melspec.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "resblock": "1",
3
+ "num_gpus": 0,
4
+ "batch_size": 16,
5
+ "learning_rate": 0.0002,
6
+ "adam_b1": 0.8,
7
+ "adam_b2": 0.99,
8
+ "lr_decay": 0.999,
9
+ "seed": 1234,
10
+
11
+ "upsample_rates": [8,8,2,2],
12
+ "upsample_kernel_sizes": [16,16,4,4],
13
+ "upsample_initial_channel": 512,
14
+ "resblock_kernel_sizes": [3,7,11],
15
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
16
+
17
+ "segment_size": 8192,
18
+ "num_mels": 80,
19
+ "num_freq": 1025,
20
+ "n_fft": 1024,
21
+ "hop_size": 256,
22
+ "win_size": 1024,
23
+
24
+ "sampling_rate": 22050,
25
+
26
+ "feat_order": 80,
27
+
28
+ "fmin": 0,
29
+ "fmax": 8000,
30
+ "fmax_for_loss": null,
31
+
32
+ "num_workers": 4,
33
+
34
+ "dist_config": {
35
+ "dist_backend": "nccl",
36
+ "dist_url": "tcp://localhost:54321",
37
+ "world_size": 1
38
+ }
39
+ }
hifigan/config_vocfeats.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "resblock": "1",
3
+ "num_gpus": 0,
4
+ "batch_size": 16,
5
+ "learning_rate": 0.0002,
6
+ "adam_b1": 0.8,
7
+ "adam_b2": 0.99,
8
+ "lr_decay": 0.999,
9
+ "seed": 1234,
10
+
11
+ "upsample_rates": [8,8,2,2],
12
+ "upsample_kernel_sizes": [16,16,4,4],
13
+ "upsample_initial_channel": 512,
14
+ "resblock_kernel_sizes": [3,7,11],
15
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
16
+
17
+ "segment_size": 8192,
18
+ "num_mels": 80,
19
+ "num_freq": 1025,
20
+ "n_fft": 1024,
21
+ "hop_size": 256,
22
+ "win_size": 1024,
23
+
24
+ "sampling_rate": 22050,
25
+
26
+ "feat_order": 42,
27
+
28
+ "fmin": 0,
29
+ "fmax": 8000,
30
+ "fmax_for_loss": null,
31
+
32
+ "num_workers": 4,
33
+
34
+ "dist_config": {
35
+ "dist_backend": "nccl",
36
+ "dist_url": "tcp://localhost:54321",
37
+ "world_size": 1
38
+ }
39
+ }
hifigan/models.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.nn import Conv1d, ConvTranspose1d
5
+ from torch.nn.utils import weight_norm, remove_weight_norm
6
+
7
+ LRELU_SLOPE = 0.1
8
+
9
+ def init_weights(m, mean=0.0, std=0.01):
10
+ classname = m.__class__.__name__
11
+ if classname.find("Conv") != -1:
12
+ m.weight.data.normal_(mean, std)
13
+
14
+
15
+ def get_padding(kernel_size, dilation=1):
16
+ return int((kernel_size * dilation - dilation) / 2)
17
+
18
+
19
+ class ResBlock1(torch.nn.Module):
20
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
21
+ super(ResBlock1, self).__init__()
22
+ self.h = h
23
+ self.convs1 = nn.ModuleList([
24
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
25
+ padding=get_padding(kernel_size, dilation[0]))),
26
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
27
+ padding=get_padding(kernel_size, dilation[1]))),
28
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
29
+ padding=get_padding(kernel_size, dilation[2])))
30
+ ])
31
+ self.convs1.apply(init_weights)
32
+
33
+ self.convs2 = nn.ModuleList([
34
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
35
+ padding=get_padding(kernel_size, 1))),
36
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
37
+ padding=get_padding(kernel_size, 1))),
38
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
39
+ padding=get_padding(kernel_size, 1)))
40
+ ])
41
+ self.convs2.apply(init_weights)
42
+
43
+ def forward(self, x):
44
+ for c1, c2 in zip(self.convs1, self.convs2):
45
+ xt = F.leaky_relu(x, LRELU_SLOPE)
46
+ xt = c1(xt)
47
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
48
+ xt = c2(xt)
49
+ x = xt + x
50
+ return x
51
+
52
+ def remove_weight_norm(self):
53
+ for l in self.convs1:
54
+ remove_weight_norm(l)
55
+ for l in self.convs2:
56
+ remove_weight_norm(l)
57
+
58
+
59
+ class ResBlock2(torch.nn.Module):
60
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
61
+ super(ResBlock2, self).__init__()
62
+ self.h = h
63
+ self.convs = nn.ModuleList([
64
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
65
+ padding=get_padding(kernel_size, dilation[0]))),
66
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
67
+ padding=get_padding(kernel_size, dilation[1])))
68
+ ])
69
+ self.convs.apply(init_weights)
70
+
71
+ def forward(self, x):
72
+ for c in self.convs:
73
+ xt = F.leaky_relu(x, LRELU_SLOPE)
74
+ xt = c(xt)
75
+ x = xt + x
76
+ return x
77
+
78
+ def remove_weight_norm(self):
79
+ for l in self.convs:
80
+ remove_weight_norm(l)
81
+
82
+
83
+ class Generator(torch.nn.Module):
84
+ def __init__(self, h):
85
+ super(Generator, self).__init__()
86
+ self.h = h
87
+ self.num_kernels = len(h.resblock_kernel_sizes)
88
+ self.num_upsamples = len(h.upsample_rates)
89
+ self.conv_pre = weight_norm(Conv1d(h.feat_order, h.upsample_initial_channel, 7, 1, padding=3))
90
+ resblock = ResBlock1 if h.resblock == '1' else ResBlock2
91
+
92
+ self.ups = nn.ModuleList()
93
+ for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
94
+ self.ups.append(weight_norm(
95
+ ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
96
+ k, u, padding=(k-u)//2)))
97
+
98
+ self.resblocks = nn.ModuleList()
99
+ for i in range(len(self.ups)):
100
+ ch = h.upsample_initial_channel//(2**(i+1))
101
+ for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
102
+ self.resblocks.append(resblock(h, ch, k, d))
103
+
104
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
105
+ self.ups.apply(init_weights)
106
+ self.conv_post.apply(init_weights)
107
+
108
+ def forward(self, x):
109
+ x = self.conv_pre(x)
110
+ for i in range(self.num_upsamples):
111
+ x = F.leaky_relu(x, LRELU_SLOPE)
112
+ x = self.ups[i](x)
113
+ xs = None
114
+ for j in range(self.num_kernels):
115
+ if xs is None:
116
+ xs = self.resblocks[i*self.num_kernels+j](x)
117
+ else:
118
+ xs += self.resblocks[i*self.num_kernels+j](x)
119
+ x = xs / self.num_kernels
120
+ x = F.leaky_relu(x)
121
+ x = self.conv_post(x)
122
+ x = torch.tanh(x)
123
+
124
+ return x
125
+
126
+ def remove_weight_norm(self):
127
+ print('Removing weight norm...')
128
+ for l in self.ups:
129
+ remove_weight_norm(l)
130
+ for l in self.resblocks:
131
+ l.remove_weight_norm()
132
+ remove_weight_norm(self.conv_pre)
133
+ remove_weight_norm(self.conv_post)