convert / convert.py
Narsil's picture
Narsil HF staff
Returning the PR as per old code (still passing `api` instead of `token` directly
ff90924
raw
history blame
4.82 kB
import argparse
import json
import os
import shutil
import torch
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import save_file
from transformers import AutoConfig
from transformers.pipelines.base import infer_framework_load_model
def check_file_size(sf_filename, pt_filename):
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(
f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
"""
)
def rename(pt_filename) -> str:
local = pt_filename.replace(".bin", ".safetensors")
local = local.replace("pytorch_model", "model")
return local
def convert_multi(model_id, folder):
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json")
with open(filename, "r") as f:
data = json.load(f)
filenames = set(data["weight_map"].values())
local_filenames = []
for filename in filenames:
cached_filename = hf_hub_download(repo_id=model_id, filename=filename)
loaded = torch.load(cached_filename)
sf_filename = rename(filename)
local = os.path.join(folder, sf_filename)
save_file(loaded, local, metadata={"format": "pt"})
check_file_size(local, cached_filename)
local_filenames.append(local)
index = os.path.join(folder, "model.safetensors.index.json")
with open(index, "w") as f:
newdata = {k: v for k, v in data.items()}
newmap = {k: rename(v) for k, v in data["weight_map"].items()}
newdata["weight_map"] = newmap
json.dump(newdata, f)
local_filenames.append(index)
operations = [
CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames
]
return operations
def convert_single(model_id, folder):
sf_filename = "model.safetensors"
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
loaded = torch.load(filename)
local = os.path.join(folder, sf_filename)
save_file(loaded, local, metadata={"format": "pt"})
check_file_size(local, filename)
operations = [CommitOperationAdd(path_in_repo=sf_filename, path_or_fileobj=local)]
return operations
def check_final_model(model_id, folder):
config = hf_hub_download(repo_id=model_id, filename="config.json")
shutil.copy(config, os.path.join(folder, "config.json"))
config = AutoConfig.from_pretrained(folder)
_, sf_model = infer_framework_load_model(folder, config)
_, pt_model = infer_framework_load_model(model_id, config)
input_ids = torch.arange(10).long().unsqueeze(0)
sf_logits = sf_model(input_ids)
pt_logits = pt_model(input_ids)
torch.testing.assert_close(sf_logits, pt_logits)
print(f"Model {model_id} is ok !")
def convert(api, model_id):
info = api.model_info(model_id)
filenames = set(s.rfilename for s in info.siblings)
folder = repo_folder_name(repo_id=model_id, repo_type="models")
os.makedirs(folder)
new_pr = None
try:
operations = None
if "model.safetensors" in filenames or "model_index.safetensors.index.json" in filenames:
print(f"Model {model_id} is already converted, skipping..")
elif "pytorch_model.bin" in filenames:
operations = convert_single(model_id, folder)
elif "pytorch_model.bin.index.json" in filenames:
operations = convert_multi(model_id, folder)
else:
raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
if operations:
check_final_model(model_id, folder)
new_pr = api.create_commit(
repo_id=model_id,
operations=operations,
commit_message="Adding `safetensors` variant of this model",
create_pr=True,
)
finally:
shutil.rmtree(folder)
return new_pr
if __name__ == "__main__":
DESCRIPTION = """
Simple utility tool to convert automatically some weights on the hub to `safetensors` format.
It is PyTorch exclusive for now.
It works by downloading the weights (PT), converting them locally, and uploading them back
as a PR on the hub.
"""
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
"model_id",
type=str,
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
)
args = parser.parse_args()
model_id = args.model_id
api = HfApi()
convert(api, model_id)