Spaces:
Running
Running
import argparse | |
import json | |
import os | |
import shutil | |
import torch | |
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download | |
from huggingface_hub.file_download import repo_folder_name | |
from safetensors.torch import save_file | |
from transformers import AutoConfig | |
from transformers.pipelines.base import infer_framework_load_model | |
def check_file_size(sf_filename, pt_filename): | |
sf_size = os.stat(sf_filename).st_size | |
pt_size = os.stat(pt_filename).st_size | |
if (sf_size - pt_size) / pt_size > 0.01: | |
raise RuntimeError( | |
f"""The file size different is more than 1%: | |
- {sf_filename}: {sf_size} | |
- {pt_filename}: {pt_size} | |
""" | |
) | |
def rename(pt_filename) -> str: | |
local = pt_filename.replace(".bin", ".safetensors") | |
local = local.replace("pytorch_model", "model") | |
return local | |
def convert_multi(model_id, folder): | |
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json") | |
with open(filename, "r") as f: | |
data = json.load(f) | |
filenames = set(data["weight_map"].values()) | |
local_filenames = [] | |
for filename in filenames: | |
cached_filename = hf_hub_download(repo_id=model_id, filename=filename) | |
loaded = torch.load(cached_filename) | |
sf_filename = rename(filename) | |
local = os.path.join(folder, sf_filename) | |
save_file(loaded, local, metadata={"format": "pt"}) | |
check_file_size(local, cached_filename) | |
local_filenames.append(local) | |
index = os.path.join(folder, "model.safetensors.index.json") | |
with open(index, "w") as f: | |
newdata = {k: v for k, v in data.items()} | |
newmap = {k: rename(v) for k, v in data["weight_map"].items()} | |
newdata["weight_map"] = newmap | |
json.dump(newdata, f) | |
local_filenames.append(index) | |
operations = [ | |
CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames | |
] | |
return operations | |
def convert_single(model_id, folder): | |
sf_filename = "model.safetensors" | |
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin") | |
loaded = torch.load(filename) | |
local = os.path.join(folder, sf_filename) | |
save_file(loaded, local, metadata={"format": "pt"}) | |
check_file_size(local, filename) | |
operations = [CommitOperationAdd(path_in_repo=sf_filename, path_or_fileobj=local)] | |
return operations | |
def check_final_model(model_id, folder): | |
config = hf_hub_download(repo_id=model_id, filename="config.json") | |
shutil.copy(config, os.path.join(folder, "config.json")) | |
config = AutoConfig.from_pretrained(folder) | |
_, sf_model = infer_framework_load_model(folder, config) | |
_, pt_model = infer_framework_load_model(model_id, config) | |
input_ids = torch.arange(10).long().unsqueeze(0) | |
sf_logits = sf_model(input_ids) | |
pt_logits = pt_model(input_ids) | |
torch.testing.assert_close(sf_logits, pt_logits) | |
print(f"Model {model_id} is ok !") | |
def convert(api, model_id): | |
info = api.model_info(model_id) | |
filenames = set(s.rfilename for s in info.siblings) | |
folder = repo_folder_name(repo_id=model_id, repo_type="models") | |
os.makedirs(folder) | |
new_pr = None | |
try: | |
operations = None | |
if "model.safetensors" in filenames or "model_index.safetensors.index.json" in filenames: | |
print(f"Model {model_id} is already converted, skipping..") | |
elif "pytorch_model.bin" in filenames: | |
operations = convert_single(model_id, folder) | |
elif "pytorch_model.bin.index.json" in filenames: | |
operations = convert_multi(model_id, folder) | |
else: | |
raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert") | |
if operations: | |
check_final_model(model_id, folder) | |
new_pr = api.create_commit( | |
repo_id=model_id, | |
operations=operations, | |
commit_message="Adding `safetensors` variant of this model", | |
create_pr=True, | |
) | |
finally: | |
shutil.rmtree(folder) | |
return new_pr | |
if __name__ == "__main__": | |
DESCRIPTION = """ | |
Simple utility tool to convert automatically some weights on the hub to `safetensors` format. | |
It is PyTorch exclusive for now. | |
It works by downloading the weights (PT), converting them locally, and uploading them back | |
as a PR on the hub. | |
""" | |
parser = argparse.ArgumentParser(description=DESCRIPTION) | |
parser.add_argument( | |
"model_id", | |
type=str, | |
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`", | |
) | |
args = parser.parse_args() | |
model_id = args.model_id | |
api = HfApi() | |
convert(api, model_id) | |