convert / convert.py
Narsil's picture
Narsil HF staff
Update convert.py
d63c3cd verified
import argparse
import json
import os
import shutil
from collections import defaultdict
from tempfile import TemporaryDirectory
from typing import Dict, List, Optional, Set, Tuple
import torch
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file
COMMIT_DESCRIPTION = """
This is an automated PR created with https://huggingface.co/spaces/safetensors/convert
This new file is equivalent to `pytorch_model.bin` but safe in the sense that
no arbitrary code can be put into it.
These files also happen to load much faster than their pytorch counterpart:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb
The widgets on your model page will run using this model even if this is not merged
making sure the file actually works.
If you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions
Feel free to ignore this PR.
"""
ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]
def _remove_duplicate_names(
state_dict: Dict[str, torch.Tensor],
*,
preferred_names: List[str] = None,
discard_names: List[str] = None,
) -> Dict[str, List[str]]:
if preferred_names is None:
preferred_names = []
preferred_names = set(preferred_names)
if discard_names is None:
discard_names = []
discard_names = set(discard_names)
shareds = _find_shared_tensors(state_dict)
to_remove = defaultdict(list)
for shared in shareds:
complete_names = set([name for name in shared if _is_complete(state_dict[name])])
if not complete_names:
if len(shared) == 1:
# Force contiguous
name = list(shared)[0]
state_dict[name] = state_dict[name].clone()
complete_names = {name}
else:
raise RuntimeError(
f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue."
)
keep_name = sorted(list(complete_names))[0]
# Mecanism to preferentially select keys to keep
# coming from the on-disk file to allow
# loading models saved with a different choice
# of keep_name
preferred = complete_names.difference(discard_names)
if preferred:
keep_name = sorted(list(preferred))[0]
if preferred_names:
preferred = preferred_names.intersection(complete_names)
if preferred:
keep_name = sorted(list(preferred))[0]
for name in sorted(shared):
if name != keep_name:
to_remove[keep_name].append(name)
return to_remove
def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]:
try:
import json
import transformers
config_filename = hf_hub_download(
model_id, revision=revision, filename="config.json", token=token, cache_dir=folder
)
with open(config_filename, "r") as f:
config = json.load(f)
architecture = config["architectures"][0]
class_ = getattr(transformers, architecture)
# Name for this varible depends on transformers version.
discard_names = getattr(class_, "_tied_weights_keys", [])
except Exception:
discard_names = []
return discard_names
class AlreadyExists(Exception):
pass
def check_file_size(sf_filename: str, pt_filename: str):
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(
f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
"""
)
def rename(pt_filename: str) -> str:
filename, ext = os.path.splitext(pt_filename)
local = f"{filename}.safetensors"
local = local.replace("pytorch_model", "model")
return local
def convert_multi(
model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str]
) -> ConversionResult:
filename = hf_hub_download(
repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder
)
with open(filename, "r") as f:
data = json.load(f)
filenames = set(data["weight_map"].values())
local_filenames = []
for filename in filenames:
pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder)
sf_filename = rename(pt_filename)
sf_filename = os.path.join(folder, sf_filename)
convert_file(pt_filename, sf_filename, discard_names=discard_names)
local_filenames.append(sf_filename)
index = os.path.join(folder, "model.safetensors.index.json")
with open(index, "w") as f:
newdata = {k: v for k, v in data.items()}
newmap = {k: rename(v) for k, v in data["weight_map"].items()}
newdata["weight_map"] = newmap
json.dump(newdata, f, indent=4)
local_filenames.append(index)
operations = [
CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames
]
errors: List[Tuple[str, "Exception"]] = []
return operations, errors
def convert_single(
model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]
) -> ConversionResult:
pt_filename = hf_hub_download(
repo_id=model_id, revision=revision, filename="pytorch_model.bin", token=token, cache_dir=folder
)
sf_name = "model.safetensors"
sf_filename = os.path.join(folder, sf_name)
convert_file(pt_filename, sf_filename, discard_names)
operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
errors: List[Tuple[str, "Exception"]] = []
return operations, errors
def convert_file(
pt_filename: str,
sf_filename: str,
discard_names: List[str],
):
loaded = torch.load(pt_filename, map_location="cpu", weights_only=True)
if "state_dict" in loaded:
loaded = loaded["state_dict"]
to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
metadata = {"format": "pt"}
for kept_name, to_remove_group in to_removes.items():
for to_remove in to_remove_group:
if to_remove not in metadata:
metadata[to_remove] = kept_name
del loaded[to_remove]
# Force tensors to be contiguous
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata=metadata)
check_file_size(sf_filename, pt_filename)
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str:
errors = []
for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]:
pt_set = set(pt_infos[key])
sf_set = set(sf_infos[key])
pt_only = pt_set - sf_set
sf_only = sf_set - pt_set
if pt_only:
errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings")
if sf_only:
errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings")
return "\n".join(errors)
def previous_pr(api: "HfApi", model_id: str, pr_title: str, revision=Optional[str]) -> Optional["Discussion"]:
try:
revision_commit = api.model_info(model_id, revision=revision).sha
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if discussion.status in {"open", "closed"} and discussion.is_pull_request and discussion.title == pr_title:
commits = api.list_repo_commits(model_id, revision=discussion.git_reference)
if revision_commit == commits[1].commit_id:
return discussion
return None
def convert_generic(
model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str]
) -> ConversionResult:
operations = []
errors = []
extensions = set([".bin", ".ckpt"])
for filename in filenames:
prefix, ext = os.path.splitext(filename)
if ext in extensions:
pt_filename = hf_hub_download(
model_id, revision=revision, filename=filename, token=token, cache_dir=folder
)
dirname, raw_filename = os.path.split(filename)
if raw_filename == "pytorch_model.bin":
# XXX: This is a special case to handle `transformers` and the
# `transformers` part of the model which is actually loaded by `transformers`.
sf_in_repo = os.path.join(dirname, "model.safetensors")
else:
sf_in_repo = f"{prefix}.safetensors"
sf_filename = os.path.join(folder, sf_in_repo)
try:
convert_file(pt_filename, sf_filename, discard_names=[])
operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename))
except Exception as e:
errors.append((pt_filename, e))
return operations, errors
def convert(
api: "HfApi", model_id: str, revision: Optional[str] = None, force: bool = False
) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]:
pr_title = "Adding `safetensors` variant of this model"
info = api.model_info(model_id, revision=revision)
filenames = set(s.rfilename for s in info.siblings)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
operations = None
pr = previous_pr(api, model_id, pr_title, revision=revision)
library_name = getattr(info, "library_name", None)
if any(filename.endswith(".safetensors") for filename in filenames) and not force:
raise AlreadyExists(f"Model {model_id} is already converted, skipping..")
elif pr is not None and not force:
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
new_pr = pr
raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
elif library_name == "transformers":
discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=api.token)
if "pytorch_model.bin" in filenames:
operations, errors = convert_single(
model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names
)
elif "pytorch_model.bin.index.json" in filenames:
operations, errors = convert_multi(
model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names
)
else:
raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
else:
operations, errors = convert_generic(
model_id, revision=revision, folder=folder, filenames=filenames, token=api.token
)
if operations:
new_pr = api.create_commit(
repo_id=model_id,
revision=revision,
operations=operations,
commit_message=pr_title,
commit_description=COMMIT_DESCRIPTION,
create_pr=True,
)
print(f"Pr created at {new_pr.pr_url}")
else:
print("No files to convert")
finally:
shutil.rmtree(folder)
return new_pr, errors
if __name__ == "__main__":
DESCRIPTION = """
Simple utility tool to convert automatically some weights on the hub to `safetensors` format.
It is PyTorch exclusive for now.
It works by downloading the weights (PT), converting them locally, and uploading them back
as a PR on the hub.
"""
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
"model_id",
type=str,
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
)
parser.add_argument(
"--revision",
type=str,
help="The revision to convert",
)
parser.add_argument(
"--force",
action="store_true",
help="Create the PR even if it already exists of if the model was already converted.",
)
parser.add_argument(
"-y",
action="store_true",
help="Ignore safety prompt",
)
args = parser.parse_args()
model_id = args.model_id
api = HfApi()
if args.y:
txt = "y"
else:
txt = input(
"This conversion script will unpickle a pickled file, which is inherently unsafe. If you do not trust this file, we invite you to use"
" https://huggingface.co/spaces/safetensors/convert or google colab or other hosted solution to avoid potential issues with this file."
" Continue [Y/n] ?"
)
if txt.lower() in {"", "y"}:
commit_info, errors = convert(api, model_id, revision=args.revision, force=args.force)
string = f"""
### Success 🔥
Yay! This model was successfully converted and a PR was open using your token, here:
[{commit_info.pr_url}]({commit_info.pr_url})
"""
if errors:
string += "\nErrors during conversion:\n"
string += "\n".join(
f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors
)
print(string)
else:
print(f"Answer was `{txt}` aborting.")