SFconvertbot commited on
Commit
8cf228f
·
1 Parent(s): 1b9d4e3

Update convert.py

Browse files
Files changed (1) hide show
  1. convert.py +116 -131
convert.py CHANGED
@@ -3,7 +3,6 @@ import json
3
  import os
4
  import shutil
5
  from collections import defaultdict
6
- from inspect import signature
7
  from tempfile import TemporaryDirectory
8
  from typing import Dict, List, Optional, Set, Tuple
9
 
@@ -11,8 +10,7 @@ import torch
11
 
12
  from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
13
  from huggingface_hub.file_download import repo_folder_name
14
- from safetensors.torch import load_file, save_file
15
- from transformers import AutoConfig
16
 
17
 
18
  COMMIT_DESCRIPTION = """
@@ -34,20 +32,78 @@ Feel free to ignore this PR.
34
 
35
  ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- class AlreadyExists(Exception):
39
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
 
41
 
42
- def shared_pointers(tensors):
43
- ptrs = defaultdict(list)
44
- for k, v in tensors.items():
45
- ptrs[v.data_ptr()].append(k)
46
- failing = []
47
- for ptr, names in ptrs.items():
48
- if len(names) > 1:
49
- failing.append(names)
50
- return failing
51
 
52
 
53
  def check_file_size(sf_filename: str, pt_filename: str):
@@ -70,8 +126,8 @@ def rename(pt_filename: str) -> str:
70
  return local
71
 
72
 
73
- def convert_multi(model_id: str, folder: str, token: Optional[str]) -> ConversionResult:
74
- filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder)
75
  with open(filename, "r") as f:
76
  data = json.load(f)
77
 
@@ -82,7 +138,7 @@ def convert_multi(model_id: str, folder: str, token: Optional[str]) -> Conversio
82
 
83
  sf_filename = rename(pt_filename)
84
  sf_filename = os.path.join(folder, sf_filename)
85
- convert_file(pt_filename, sf_filename)
86
  local_filenames.append(sf_filename)
87
 
88
  index = os.path.join(folder, "model.safetensors.index.json")
@@ -101,12 +157,12 @@ def convert_multi(model_id: str, folder: str, token: Optional[str]) -> Conversio
101
  return operations, errors
102
 
103
 
104
- def convert_single(model_id: str, folder: str, token: Optional[str]) -> ConversionResult:
105
  pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin", token=token, cache_dir=folder)
106
 
107
  sf_name = "model.safetensors"
108
  sf_filename = os.path.join(folder, sf_name)
109
- convert_file(pt_filename, sf_filename)
110
  operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
111
  errors: List[Tuple[str, "Exception"]] = []
112
  return operations, errors
@@ -115,21 +171,25 @@ def convert_single(model_id: str, folder: str, token: Optional[str]) -> Conversi
115
  def convert_file(
116
  pt_filename: str,
117
  sf_filename: str,
 
118
  ):
119
  loaded = torch.load(pt_filename, map_location="cpu")
120
  if "state_dict" in loaded:
121
  loaded = loaded["state_dict"]
122
- shared = shared_pointers(loaded)
123
- for shared_weights in shared:
124
- for name in shared_weights[1:]:
125
- loaded.pop(name)
126
-
127
- # For tensors to be contiguous
 
 
 
128
  loaded = {k: v.contiguous() for k, v in loaded.items()}
129
 
130
  dirname = os.path.dirname(sf_filename)
131
  os.makedirs(dirname, exist_ok=True)
132
- save_file(loaded, sf_filename, metadata={"format": "pt"})
133
  check_file_size(sf_filename, pt_filename)
134
  reloaded = load_file(sf_filename)
135
  for k in loaded:
@@ -155,87 +215,14 @@ def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]])
155
  return "\n".join(errors)
156
 
157
 
158
- def check_final_model(model_id: str, folder: str, token: Optional[str]):
159
- config = hf_hub_download(repo_id=model_id, filename="config.json", token=token, cache_dir=folder)
160
- shutil.copy(config, os.path.join(folder, "config.json"))
161
- config = AutoConfig.from_pretrained(folder)
162
-
163
- import transformers
164
-
165
- class_ = getattr(transformers, config.architectures[0])
166
- with torch.device("meta"):
167
- (pt_model, pt_infos) = class_.from_pretrained(folder, output_loading_info=True)
168
- (sf_model, sf_infos) = class_.from_pretrained(folder, output_loading_info=True)
169
-
170
- if pt_infos != sf_infos:
171
- error_string = create_diff(pt_infos, sf_infos)
172
- raise ValueError(f"Different infos when reloading the model: {error_string}")
173
-
174
- #### XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
175
- #### SKIPPING THE REST OF THE test to save RAM
176
- return
177
- pt_params = pt_model.state_dict()
178
- sf_params = sf_model.state_dict()
179
-
180
- pt_shared = shared_pointers(pt_params)
181
- sf_shared = shared_pointers(sf_params)
182
- if pt_shared != sf_shared:
183
- raise RuntimeError("The reconstructed model is wrong, shared tensors are different {shared_pt} != {shared_tf}")
184
-
185
- sig = signature(pt_model.forward)
186
- input_ids = torch.arange(10).unsqueeze(0)
187
- pixel_values = torch.randn(1, 3, 224, 224)
188
- input_values = torch.arange(1000).float().unsqueeze(0)
189
- # Hardcoded for whisper basically
190
- input_features = torch.zeros((1, 80, 3000))
191
- kwargs = {}
192
- if "input_ids" in sig.parameters:
193
- kwargs["input_ids"] = input_ids
194
- if "input_features" in sig.parameters:
195
- kwargs["input_features"] = input_features
196
- if "decoder_input_ids" in sig.parameters:
197
- kwargs["decoder_input_ids"] = input_ids
198
- if "pixel_values" in sig.parameters:
199
- kwargs["pixel_values"] = pixel_values
200
- if "input_values" in sig.parameters:
201
- kwargs["input_values"] = input_values
202
- if "bbox" in sig.parameters:
203
- kwargs["bbox"] = torch.zeros((1, 10, 4)).long()
204
- if "image" in sig.parameters:
205
- kwargs["image"] = pixel_values
206
-
207
- if torch.cuda.is_available():
208
- pt_model = pt_model.cuda()
209
- sf_model = sf_model.cuda()
210
- kwargs = {k: v.cuda() for k, v in kwargs.items()}
211
-
212
- try:
213
- pt_logits = pt_model(**kwargs)[0]
214
- except Exception as e:
215
- try:
216
- # Musicgen special exception.
217
- decoder_input_ids = torch.ones((input_ids.shape[0] * pt_model.decoder.num_codebooks, 1), dtype=torch.long)
218
- if torch.cuda.is_available():
219
- decoder_input_ids = decoder_input_ids.cuda()
220
-
221
- kwargs["decoder_input_ids"] = decoder_input_ids
222
- pt_logits = pt_model(**kwargs)[0]
223
- except Exception:
224
- raise e
225
- sf_logits = sf_model(**kwargs)[0]
226
-
227
- torch.testing.assert_close(sf_logits, pt_logits)
228
- print(f"Model {model_id} is ok !")
229
-
230
-
231
- def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
232
  try:
233
- main_commit = api.list_repo_commits(model_id)[0].commit_id
234
- discussions = api.get_repo_discussions(repo_id=model_id)
235
  except Exception:
236
  return None
237
  for discussion in discussions:
238
- if discussion.is_pull_request and discussion.title == pr_title:
239
  commits = api.list_repo_commits(model_id, revision=discussion.git_reference)
240
 
241
  if main_commit == commits[1].commit_id:
@@ -243,7 +230,7 @@ def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discuss
243
  return None
244
 
245
 
246
- def convert_generic(model_id: str, folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult:
247
  operations = []
248
  errors = []
249
 
@@ -251,7 +238,7 @@ def convert_generic(model_id: str, folder: str, filenames: Set[str], token: Opti
251
  for filename in filenames:
252
  prefix, ext = os.path.splitext(filename)
253
  if ext in extensions:
254
- pt_filename = hf_hub_download(model_id, filename=filename, token=token, cache_dir=folder)
255
  dirname, raw_filename = os.path.split(filename)
256
  if raw_filename == "pytorch_model.bin":
257
  # XXX: This is a special case to handle `transformers` and the
@@ -261,25 +248,25 @@ def convert_generic(model_id: str, folder: str, filenames: Set[str], token: Opti
261
  sf_in_repo = f"{prefix}.safetensors"
262
  sf_filename = os.path.join(folder, sf_in_repo)
263
  try:
264
- convert_file(pt_filename, sf_filename)
265
  operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename))
266
  except Exception as e:
267
  errors.append((pt_filename, e))
268
  return operations, errors
269
 
270
 
271
- def convert(api: "HfApi", model_id: str, force: bool = False) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]:
272
  pr_title = "Adding `safetensors` variant of this model"
273
- info = api.model_info(model_id)
274
  filenames = set(s.rfilename for s in info.siblings)
275
 
276
- with TemporaryDirectory() as d:
277
  folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
278
  os.makedirs(folder)
279
  new_pr = None
280
  try:
281
  operations = None
282
- pr = previous_pr(api, model_id, pr_title)
283
 
284
  library_name = getattr(info, "library_name", None)
285
  if any(filename.endswith(".safetensors") for filename in filenames) and not force:
@@ -289,19 +276,21 @@ def convert(api: "HfApi", model_id: str, force: bool = False) -> Tuple["CommitIn
289
  new_pr = pr
290
  raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
291
  elif library_name == "transformers":
 
 
292
  if "pytorch_model.bin" in filenames:
293
- operations, errors = convert_single(model_id, folder, token=api.token)
294
  elif "pytorch_model.bin.index.json" in filenames:
295
- operations, errors = convert_multi(model_id, folder, token=api.token)
296
  else:
297
  raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
298
- check_final_model(model_id, folder, token=api.token)
299
  else:
300
- operations, errors = convert_generic(model_id, folder, filenames, token=api.token)
301
 
302
  if operations:
303
  new_pr = api.create_commit(
304
  repo_id=model_id,
 
305
  operations=operations,
306
  commit_message=pr_title,
307
  commit_description=COMMIT_DESCRIPTION,
@@ -328,6 +317,11 @@ if __name__ == "__main__":
328
  type=str,
329
  help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
330
  )
 
 
 
 
 
331
  parser.add_argument(
332
  "--force",
333
  action="store_true",
@@ -350,26 +344,17 @@ if __name__ == "__main__":
350
  " Continue [Y/n] ?"
351
  )
352
  if txt.lower() in {"", "y"}:
353
- try:
354
- commit_info, errors = convert(api, model_id, force=args.force)
355
- string = f"""
356
  ### Success 🔥
357
  Yay! This model was successfully converted and a PR was open using your token, here:
358
  [{commit_info.pr_url}]({commit_info.pr_url})
359
- """
360
- if errors:
361
- string += "\nErrors during conversion:\n"
362
- string += "\n".join(
363
- f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors
364
- )
365
- print(string)
366
- except Exception as e:
367
- print(
368
- f"""
369
- ### Error 😢😢😢
370
-
371
- {e}
372
- """
373
  )
 
374
  else:
375
  print(f"Answer was `{txt}` aborting.")
 
3
  import os
4
  import shutil
5
  from collections import defaultdict
 
6
  from tempfile import TemporaryDirectory
7
  from typing import Dict, List, Optional, Set, Tuple
8
 
 
10
 
11
  from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
12
  from huggingface_hub.file_download import repo_folder_name
13
+ from safetensors.torch import save_file, load_file, _find_shared_tensors, _is_complete
 
14
 
15
 
16
  COMMIT_DESCRIPTION = """
 
32
 
33
  ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]
34
 
35
+ def _remove_duplicate_names(
36
+ state_dict: Dict[str, torch.Tensor],
37
+ *,
38
+ preferred_names: List[str] = None,
39
+ discard_names: List[str] = None,
40
+ ) -> Dict[str, List[str]]:
41
+ if preferred_names is None:
42
+ preferred_names = []
43
+ preferred_names = set(preferred_names)
44
+ if discard_names is None:
45
+ discard_names = []
46
+ discard_names = set(discard_names)
47
+
48
+ shareds = _find_shared_tensors(state_dict)
49
+ to_remove = defaultdict(list)
50
+ for shared in shareds:
51
+ complete_names = set(
52
+ [name for name in shared if _is_complete(state_dict[name])]
53
+ )
54
+ if not complete_names:
55
+ if len(shared) == 1:
56
+ # Force contiguous
57
+ name = list(shared)[0]
58
+ state_dict[name] = state_dict[name].clone()
59
+ complete_names = {name}
60
+ else:
61
+ raise RuntimeError(
62
+ f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue."
63
+ )
64
 
65
+ keep_name = sorted(list(complete_names))[0]
66
+
67
+ # Mecanism to preferentially select keys to keep
68
+ # coming from the on-disk file to allow
69
+ # loading models saved with a different choice
70
+ # of keep_name
71
+ preferred = complete_names.difference(discard_names)
72
+ if preferred:
73
+ keep_name = sorted(list(preferred))[0]
74
+
75
+ if preferred_names:
76
+ preferred = preferred_names.intersection(complete_names)
77
+ if preferred:
78
+ keep_name = sorted(list(preferred))[0]
79
+ for name in sorted(shared):
80
+ if name != keep_name:
81
+ to_remove[keep_name].append(name)
82
+ return to_remove
83
+
84
+ def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]:
85
+ try:
86
+ import transformers
87
+ import json
88
+
89
+ config_filename = hf_hub_download(
90
+ model_id, revision=revision, filename="config.json", token=token, cache_dir=folder
91
+ )
92
+ with open(config_filename, "r") as f:
93
+ config = json.load(f)
94
+ architecture = config["architectures"][0]
95
 
96
+ class_ = getattr(transformers, architecture)
97
 
98
+ # Name for this varible depends on transformers version.
99
+ discard_names = getattr(class_, "_tied_weights_keys", [])
100
+
101
+ except Exception as e:
102
+ discard_names = []
103
+ return discard_names
104
+
105
+ class AlreadyExists(Exception):
106
+ pass
107
 
108
 
109
  def check_file_size(sf_filename: str, pt_filename: str):
 
126
  return local
127
 
128
 
129
+ def convert_multi(model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
130
+ filename = hf_hub_download(repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder)
131
  with open(filename, "r") as f:
132
  data = json.load(f)
133
 
 
138
 
139
  sf_filename = rename(pt_filename)
140
  sf_filename = os.path.join(folder, sf_filename)
141
+ convert_file(pt_filename, sf_filename, discard_names=discard_names)
142
  local_filenames.append(sf_filename)
143
 
144
  index = os.path.join(folder, "model.safetensors.index.json")
 
157
  return operations, errors
158
 
159
 
160
+ def convert_single(model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]) -> ConversionResult:
161
  pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin", token=token, cache_dir=folder)
162
 
163
  sf_name = "model.safetensors"
164
  sf_filename = os.path.join(folder, sf_name)
165
+ convert_file(pt_filename, sf_filename, discard_names)
166
  operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
167
  errors: List[Tuple[str, "Exception"]] = []
168
  return operations, errors
 
171
  def convert_file(
172
  pt_filename: str,
173
  sf_filename: str,
174
+ discard_names: List[str],
175
  ):
176
  loaded = torch.load(pt_filename, map_location="cpu")
177
  if "state_dict" in loaded:
178
  loaded = loaded["state_dict"]
179
+ to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
180
+
181
+ metadata = {"format": "pt"}
182
+ for kept_name, to_remove_group in to_removes.items():
183
+ for to_remove in to_remove_group:
184
+ if to_remove not in metadata:
185
+ metadata[to_remove] = kept_name
186
+ del loaded[to_remove]
187
+ # Force tensors to be contiguous
188
  loaded = {k: v.contiguous() for k, v in loaded.items()}
189
 
190
  dirname = os.path.dirname(sf_filename)
191
  os.makedirs(dirname, exist_ok=True)
192
+ save_file(loaded, sf_filename, metadata=metadata)
193
  check_file_size(sf_filename, pt_filename)
194
  reloaded = load_file(sf_filename)
195
  for k in loaded:
 
215
  return "\n".join(errors)
216
 
217
 
218
+ def previous_pr(api: "HfApi", model_id: str, pr_title: str, revision=Optional[str]) -> Optional["Discussion"]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
  try:
220
+ main_commit = api.list_repo_commits(model_id, revision=revision)[0].commit_id
221
+ discussions = api.get_repo_discussions(repo_id=model_id, revision=revision)
222
  except Exception:
223
  return None
224
  for discussion in discussions:
225
+ if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
226
  commits = api.list_repo_commits(model_id, revision=discussion.git_reference)
227
 
228
  if main_commit == commits[1].commit_id:
 
230
  return None
231
 
232
 
233
+ def convert_generic(model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult:
234
  operations = []
235
  errors = []
236
 
 
238
  for filename in filenames:
239
  prefix, ext = os.path.splitext(filename)
240
  if ext in extensions:
241
+ pt_filename = hf_hub_download(model_id, revision=revision, filename=filename, token=token, cache_dir=folder)
242
  dirname, raw_filename = os.path.split(filename)
243
  if raw_filename == "pytorch_model.bin":
244
  # XXX: This is a special case to handle `transformers` and the
 
248
  sf_in_repo = f"{prefix}.safetensors"
249
  sf_filename = os.path.join(folder, sf_in_repo)
250
  try:
251
+ convert_file(pt_filename, sf_filename, discard_names=[])
252
  operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename))
253
  except Exception as e:
254
  errors.append((pt_filename, e))
255
  return operations, errors
256
 
257
 
258
+ def convert(api: "HfApi", model_id: str, revision: Optional[str] = None, force: bool = False) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]:
259
  pr_title = "Adding `safetensors` variant of this model"
260
+ info = api.model_info(model_id, revision=revision)
261
  filenames = set(s.rfilename for s in info.siblings)
262
 
263
+ with TemporaryDirectory(prefix=os.getenv("HF_HOME", "") + "/") as d:
264
  folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
265
  os.makedirs(folder)
266
  new_pr = None
267
  try:
268
  operations = None
269
+ pr = previous_pr(api, model_id, pr_title, revision=revision)
270
 
271
  library_name = getattr(info, "library_name", None)
272
  if any(filename.endswith(".safetensors") for filename in filenames) and not force:
 
276
  new_pr = pr
277
  raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
278
  elif library_name == "transformers":
279
+
280
+ discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=api.token)
281
  if "pytorch_model.bin" in filenames:
282
+ operations, errors = convert_single(model_id, revision=revision, folder=folder, token=api.token, discard_names = discard_names)
283
  elif "pytorch_model.bin.index.json" in filenames:
284
+ operations, errors = convert_multi(model_id, revision=revision, folder=folder, token=api.token, discard_names = discard_names)
285
  else:
286
  raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
 
287
  else:
288
+ operations, errors = convert_generic(model_id, revision=revision, folder=folder, filenames=filenames, token=api.token)
289
 
290
  if operations:
291
  new_pr = api.create_commit(
292
  repo_id=model_id,
293
+ revision=revision,
294
  operations=operations,
295
  commit_message=pr_title,
296
  commit_description=COMMIT_DESCRIPTION,
 
317
  type=str,
318
  help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
319
  )
320
+ parser.add_argument(
321
+ "--revision",
322
+ type=str,
323
+ help="The revision to convert",
324
+ )
325
  parser.add_argument(
326
  "--force",
327
  action="store_true",
 
344
  " Continue [Y/n] ?"
345
  )
346
  if txt.lower() in {"", "y"}:
347
+ commit_info, errors = convert(api, model_id, revision=args.revision, force=args.force)
348
+ string = f"""
 
349
  ### Success 🔥
350
  Yay! This model was successfully converted and a PR was open using your token, here:
351
  [{commit_info.pr_url}]({commit_info.pr_url})
352
+ """
353
+ if errors:
354
+ string += "\nErrors during conversion:\n"
355
+ string += "\n".join(
356
+ f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors
 
 
 
 
 
 
 
 
 
357
  )
358
+ print(string)
359
  else:
360
  print(f"Answer was `{txt}` aborting.")