File size: 4,580 Bytes
c9e151d
9986a01
c9e151d
9986a01
c9e151d
9986a01
cd12ec7
 
 
 
 
 
63b02f7
9986a01
 
 
 
 
 
 
 
 
c9e151d
9986a01
 
 
 
 
 
 
 
 
 
 
10dacc2
c9e151d
9986a01
 
c9e151d
9986a01
 
 
 
 
 
 
10dacc2
9986a01
 
 
03cdb75
9986a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03cdb75
9986a01
 
 
 
 
 
 
 
 
10dacc2
9986a01
 
 
 
 
 
 
 
 
 
10dacc2
9986a01
 
 
 
 
 
 
 
c9e151d
9986a01
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import spaces
from PIL import Image
import os
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
import subprocess
from io import BytesIO

# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


# Load the model and processor
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16,
    use_flash_attention_2=False,  # Explicitly disable Flash Attention 2
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)

@spaces.GPU(duration=120)
def solve_math_problem(image):
    # Move model to GPU for this function call
    model.to('cuda')
    
    # Prepare the input
    messages = [
        {"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
    ]
    prompt = processor.tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    
    # Process the input
    inputs = processor(prompt, image, return_tensors="pt").to("cuda")
    
    # Generate the response
    generation_args = {
        "max_new_tokens": 1000,
        "temperature": 0.2,
        "do_sample": True,
    }
    generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
    
    # Decode the response
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    
    # Move model back to CPU to free up GPU memory
    model.to('cpu')
    return response

# Custom CSS
custom_css = """
<style>
    body {
        font-family: 'Arial', sans-serif;
        background-color: #f0f3f7;
        margin: 0;
        padding: 0;
    }
    .container {
        max-width: 1200px;
        margin: 0 auto;
        padding: 20px;
    }
    .header {
        background-color: #2c3e50;
        color: white;
        padding: 20px 0;
        text-align: center;
    }
    .header h1 {
        margin: 0;
        font-size: 2.5em;
    }
    .main-content {
        display: flex;
        justify-content: space-between;
        margin-top: 30px;
    }
    .input-section, .output-section {
        width: 48%;
        background-color: white;
        border-radius: 8px;
        padding: 20px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .gr-button {
        background-color: #27ae60;
        color: white;
        border: none;
        padding: 10px 20px;
        border-radius: 5px;
        cursor: pointer;
        transition: background-color 0.3s;
    }
    .gr-button:hover {
        background-color: #2ecc71;
    }
    .examples-section {
        margin-top: 30px;
        background-color: white;
        border-radius: 8px;
        padding: 20px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .examples-section h3 {
        margin-top: 0;
        color: #2c3e50;
    }
    .footer {
        text-align: center;
        margin-top: 30px;
        color: #7f8c8d;
    }
</style>
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css) as iface:
    gr.HTML("""
        <div class="header">
            <h1>AI Math Equation Solver</h1>
            <p>Upload an image of a math problem, and our AI will solve it step by step!</p>
        </div>
    """)
    
    with gr.Row(equal_height=True):
        with gr.Column():
            gr.HTML("<h2>Upload Your Math Problem</h2>")
            input_image = gr.Image(type="pil", label="Upload Math Problem Image")
            submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
        
        with gr.Column():
            gr.HTML("<h2>Solution</h2>")
            output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
    
    gr.HTML("<h3>Try These Examples</h3>")
    examples = gr.Examples(
        examples=[
            os.path.join(os.path.dirname(__file__), "eqn1.png"),
            os.path.join(os.path.dirname(__file__), "eqn2.png")
        ],
        inputs=input_image,
        outputs=output_text,
        fn=solve_math_problem,
        cache_examples=True,
    )
    
    gr.HTML("""
        <div class="footer">
            <p>Powered by Gradio and AI - Created for educational purposes</p>
        </div>
    """)

    submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text)

# Launch the app
iface.launch()