tcftrees commited on
Commit
e20929a
·
1 Parent(s): f244b63

Add application file

Browse files
Files changed (3) hide show
  1. app.py +66 -0
  2. requirements.txt +2 -0
  3. utils.py +120 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # !usr/bin/env python
2
+ # -*- coding:utf-8 -*-
3
+
4
+ '''
5
+ Description :
6
+ Version : 1.0
7
+ Author : Chaofan Tao
8
9
+ Github : https://github.com/sail-sg/scaling-with-vocab
10
+ Date : 2024-08-09 00:25
11
+ Copyright (C) 2024 Chaofan Tao. All rights reserved.
12
+ '''
13
+ import gradio as gr
14
+ import pandas as pd
15
+
16
+ from utils import approach1_isoflops, approach2_derivative, approach3_isoloss
17
+
18
+
19
+ def compute_optimal_vocab(Nnv: float,
20
+ flops: float,
21
+ ):
22
+
23
+ if flops is None:
24
+ Vopt_app1 = approach1_isoflops(Nnv)
25
+ Vopt_app2 = approach2_derivative(Nnv)
26
+ Vopt_app3 = approach3_isoloss(Nnv)
27
+ else:
28
+ Vopt_app1, Vopt_app2 = None, None
29
+ Vopt_app3 = approach3_isoloss(Nnv,flops)
30
+
31
+ results = f"## The optimal vocabulary size for non-vocabulary parameters {Nnv:1e} is:\nApproach 1: {Vopt_app1}\nApproach 2: {Vopt_app2}Approach 3: {Vopt_app3}"
32
+ return results
33
+
34
+
35
+ with gr.Blocks() as demo:
36
+ with gr.Column():
37
+ gr.Markdown(
38
+ """<img src="https://raw.githubusercontent.com/MrYxJ/calculate-flops.pytorch/main/screenshot/calflops_hf3.png?raw=true" style="float: left;" width="250" height="250"><h1> ⛽️Model(Transformers) FLOPs and Parameter Calculator</h1>
39
+ This tool is used to predict the optimal vocabulary size <h1> given the non-vocabulary parameters $N_{nv}$</h1>.
40
+ We provide 3 ways for prediction:
41
+
42
+ - Approach 1: Build the relationship between studied attributes and FLOPs: Build the relationship between the optimal data points (the points that reach the lowest loss under the same FLOPs budget) and the FLOPs.
43
+ - Approach 2: Derivative-Based Estimation: Fast calculation method using the derivative of FLOPs with respect to the vocabulary size.
44
+ - Approach 3: Parametric Fit of Loss Formula: Design a loss formula that considers the effect of vocabulary size and utilizes the loss to make prediction.
45
+
46
+ Approach 1 and 2 can only be used to compute the optimal vocabulary size when the compute is optimally allocated to non-vocabulary parameters, vocabulary parameters and data jointly.
47
+ Approach 3 will not only consider the case above, but also consider the case when the amount of data does not satisfy the optimal compute allocation, and can calculate the optimal vocabulary size with specified $N_{nv}$ and FLOPs.
48
+
49
+ Thanks for trying 🌟🌟🌟!
50
+ """)
51
+
52
+ with gr.Row():
53
+ Nnv = gr.inputs.Textbox(label="Non-vocabulary Parameters", value=7*10**9)
54
+ flops = gr.inputs.Textbox(label="FLOPs", placeholder="Optional (e.g. 7.05*10**21)")
55
+ output_text = gr.outputs.Textbox(label='output')
56
+ with gr.Row():
57
+ btn = gr.Button("Compute the optimal vocabulary size")
58
+
59
+
60
+ demo = gr.Interface(fn=compute_optimal_vocab, inputs=[Nnv, flops], outputs=output_text)
61
+ btn.click(
62
+ compute_optimal_vocab,
63
+ inputs=[Nnv, flops],
64
+ outputs=output_text
65
+ )
66
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ scipy
2
+ numpy
utils.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ from scipy.optimize import fsolve
4
+
5
+
6
+ def Nnv_to_d(Nnv):
7
+ if Nnv <= 50_000_000:
8
+ d = 512
9
+ elif 50_000_000 < Nnv <= 200_000_000:
10
+ d = 768
11
+ elif 200_000_000 < Nnv <= 500_000_000:
12
+ d = 1024
13
+ elif 500_000_000 < Nnv <= 1_000_000_000:
14
+ d = 1536
15
+ elif 1_000_000_000 < Nnv <= 2_000_000_000:
16
+ d = 2048
17
+ elif 2_000_000_000 < Nnv <= 5_000_000_000:
18
+ d = 3200
19
+ elif 5_000_000_000 < Nnv <= 10_000_000_000:
20
+ d = 4096
21
+ elif 10_000_000_000 < Nnv <= 20_000_000_000:
22
+ d = 5120
23
+ elif 20_000_000_000 < Nnv <= 50_000_000_000:
24
+ d = 6048
25
+ elif 50_000_000_000 < Nnv <= 100_000_000_000:
26
+ d = 8192
27
+ elif 100_000_000_000 < Nnv <= 200_000_000_000:
28
+ d = 12288
29
+ elif 200_000_000_000 < Nnv <= 500_000_000_000:
30
+ d = 16384
31
+ elif 500_000_000_000 < Nnv <= 1000_000_000_000:
32
+ d = 20480
33
+ else:
34
+ d = 24576
35
+ # raise ValueError()
36
+ return float(d)
37
+
38
+
39
+ def Nnvopt_to_flops(Nnv):
40
+ '''Return the corresponding training-optimal FLOPs budget
41
+ given the non-vocabulary parameters Nnv'''
42
+ FLOPs = ( Nnv/np.exp(-2.4846510161625193)) ** (1/0.5)
43
+ return FLOPs
44
+
45
+
46
+ def flops_to_Nnvopt(FLOPs):
47
+ '''Return the corresponding training-optimal non-vocabulary parameters Nnv
48
+ given the FLOPs budget'''
49
+ return np.exp(-2.4846510161625193) * FLOPs **0.5
50
+
51
+
52
+ def approach1_isoflops(Nnv):
53
+ '''Predict the training-optimal vocabulary parameters by the approach 1:
54
+ Build the relationship between studied attributes and FLOPs'''
55
+ d = Nnv_to_d(Nnv)
56
+ FLOPs = ( Nnv/np.exp(-2.4846510161625193)) ** (1/0.5)
57
+ Nv = np.exp(-1.589031299255507)* FLOPs ** 0.4163622634135234
58
+ return int(Nv/d)
59
+
60
+ def approach2_derivative(Nnv):
61
+ '''Predict the training-optimal vocabulary parameters by the approach 2:
62
+ Derivative-based fast estimation'''
63
+ d = Nnv_to_d(Nnv)
64
+ best_vocab_para = 3145728
65
+ best_alpha = 0.8353974035228025
66
+ return int((best_vocab_para * (Nnv / 33_000_000) ** best_alpha)/d)
67
+
68
+ def approach3_isoloss(Nnv, FLOPs=None):
69
+ '''Predict the training-optimal vocabulary parameters by the approach 3:
70
+ Parametric fit of loss function.
71
+ Different from the approach 1 & 2 that assumes the the training data and
72
+ non-vocabulary parameters are EQUALLY scaled to essure the optimal compute allocation,
73
+ the approach 3 is more flexible that it can also be used in the cases the training data is
74
+ not EQUALLY scaled with the non-vocabulary parameters, for example, the number of data
75
+ is insufficient or overly sufficient. One can assign a FLOPs budget to
76
+ adjust the number of available training data.
77
+ '''
78
+ def dl_dv(V, Nnv, d, F):
79
+ term1 = 0 # Derivative of -E
80
+ term2 = 0 # Derivative of A1/[Nnv]^alpha1
81
+ term3 = -alpha2 * A2 * d / (V * d) ** (alpha2 + 1)
82
+ u = F / (6 * (Nnv + V * d))
83
+ du_dV = F * d / (6 * (Nnv + V * d) ** 2)
84
+ term4 = beta * B * du_dV / (u ** (beta + 1))
85
+ return term1 + term2 + term3 + term4
86
+ A1, A2, B, E = 1.8313851559554126, 0.19584238398665638, 2.1241123120064955, 5.5327846803337435,
87
+ alpha1, alpha2, beta = 0.44660634152009615, 0.6707374679896795, 0.44660634152009615
88
+
89
+ d = Nnv_to_d(Nnv)
90
+ if FLOPs is None:
91
+ FLOPs = Nnvopt_to_flops(Nnv)
92
+ # normalization
93
+ Nnv = Nnv / 1_000_000
94
+ d = d / 1_000
95
+ FLOPs = FLOPs / (1_000_000_000*1_000_000)
96
+ V = fsolve(dl_dv, 1, args=(Nnv,d,FLOPs))[0]
97
+ # de-normalization
98
+ Nnv = Nnv * 1_000_000
99
+ d = d * 1_000
100
+ FLOPs = FLOPs * (1_000_000_000*1_000_000)
101
+ return int(V*1000)
102
+
103
+
104
+ if __name__ == '__main__':
105
+ '''
106
+ By using the coefficient fitted in the proposed 3 approaches, this code
107
+ provide an example about how to predict the optimal vocabulary
108
+ parameters (Nv) and vocabulary size, given the non-vocabulary parameters (Nnv).
109
+ '''
110
+ # Nnv = 7*10**9
111
+ # Nvopt_app1 = approach1_isoflops(Nnv)
112
+ # Nvopt_app2 = approach2_derivative(Nnv)
113
+ # Nvopt_app3 = approach3_isoloss(Nnv)
114
+ # FLOPs = Nnvopt_to_flops(Nnv)
115
+ # print(FLOPs)
116
+ # d = Nnv_to_d(Nnv)
117
+ # Vopt_app1, Vopt_app2, Vopt_app3 = int(Nvopt_app1/d), int(Nvopt_app2/d), int(Nvopt_app3/d)
118
+ # print(f'Given Nnv={Nnv}: The predicted optimal vocabulary size is {Nvopt_app1}, {Nvopt_app2}, {Nvopt_app3} by the 3 proposed approaches.\
119
+ # The predicted optimal vocabulary size is {Vopt_app1}, {Vopt_app2}, {Vopt_app3} by the 3 proposed approaches.')
120
+