Samuel Mueller commited on
Commit
f50f696
·
1 Parent(s): ab8ac48

working locally

Browse files
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .ipynb_checkpoints
2
+ flagged
3
+ .idea
SettingUpTheWebiste.ipynb ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "963a04b2",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": []
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "8ebc97aa",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": []
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 1,
22
+ "id": "b73f00ce",
23
+ "metadata": {},
24
+ "outputs": [
25
+ {
26
+ "name": "stdout",
27
+ "output_type": "stream",
28
+ "text": [
29
+ "Running locally at: http://127.0.0.1:7860/\n",
30
+ "To create a public link, set `share=True` in `launch()`.\n"
31
+ ]
32
+ },
33
+ {
34
+ "data": {
35
+ "text/html": [
36
+ "\n",
37
+ " <iframe\n",
38
+ " width=\"900\"\n",
39
+ " height=\"500\"\n",
40
+ " src=\"http://127.0.0.1:7860/\"\n",
41
+ " frameborder=\"0\"\n",
42
+ " allowfullscreen\n",
43
+ " ></iframe>\n",
44
+ " "
45
+ ],
46
+ "text/plain": [
47
+ "<IPython.lib.display.IFrame at 0x7f8f67cba520>"
48
+ ]
49
+ },
50
+ "metadata": {},
51
+ "output_type": "display_data"
52
+ },
53
+ {
54
+ "data": {
55
+ "text/plain": [
56
+ "(<Flask 'gradio.networking'>, 'http://127.0.0.1:7860/', None)"
57
+ ]
58
+ },
59
+ "execution_count": 1,
60
+ "metadata": {},
61
+ "output_type": "execute_result"
62
+ }
63
+ ],
64
+ "source": [
65
+ "import gradio as gr\n",
66
+ "import numpy as np\n",
67
+ "import matplotlib.pyplot as plt\n",
68
+ "import gpytorch\n",
69
+ "import torch\n",
70
+ "import sys\n",
71
+ "\n",
72
+ "import gpytorch\n",
73
+ "\n",
74
+ "# We will use the simplest form of GP model, exact inference\n",
75
+ "class ExactGPModel(gpytorch.models.ExactGP):\n",
76
+ " def __init__(self, train_x, train_y, likelihood):\n",
77
+ " super(ExactGPModel, self).__init__(train_x, train_y, likelihood)\n",
78
+ " self.mean_module = gpytorch.means.ConstantMean()\n",
79
+ " self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())\n",
80
+ "\n",
81
+ " def forward(self, x):\n",
82
+ " mean_x = self.mean_module(x)\n",
83
+ " covar_x = self.covar_module(x)\n",
84
+ " return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)\n",
85
+ "\n",
86
+ "def get_model(x, y, hyperparameters):\n",
87
+ " likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))\n",
88
+ " model = ExactGPModel(x, y, likelihood)\n",
89
+ " model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters[\"noise\"]\n",
90
+ " model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters[\"outputscale\"]\n",
91
+ " model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \\\n",
92
+ " hyperparameters[\"lengthscale\"]\n",
93
+ " return model, likelihood\n",
94
+ "\n",
95
+ "\n",
96
+ "\n",
97
+ "excuse = \"Please only specify numbers, x values should be in [0,1] and y values in [-1,1].\"\n",
98
+ "excuse_max_examples = \"This model is trained to work with up to 4 input points.\"\n",
99
+ "hyperparameters = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .1, 'fast_computations': (False,False,False)}\n",
100
+ "\n",
101
+ "\n",
102
+ "conf = .5\n",
103
+ "\n",
104
+ "def mean_and_bounds_for_gp(x,y,test_xs):\n",
105
+ " gp_model, likelihood = get_model(x,y,hyperparameters)\n",
106
+ " gp_model.eval()\n",
107
+ " l = likelihood(gp_model(test_xs))\n",
108
+ " means = l.mean.squeeze()\n",
109
+ " varis = torch.diagonal(l.covariance_matrix.squeeze())\n",
110
+ " stds = varis.sqrt()\n",
111
+ " return means, means-stds, means+stds\n",
112
+ "\n",
113
+ "\n",
114
+ "def mean_and_bounds_for_pnf(x,y,test_xs, choice):\n",
115
+ " sys.path.append('prior-fitting/')\n",
116
+ " model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt')\n",
117
+ "\n",
118
+ "\n",
119
+ " logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x))\n",
120
+ " bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1)\n",
121
+ " return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1]\n",
122
+ "\n",
123
+ "def plot_w_conf_interval(ax_or_plt, x, m, lb, ub, color):\n",
124
+ " ax_or_plt.plot(x.squeeze(-1),m, color=color)\n",
125
+ " ax_or_plt.fill_between(x.squeeze(-1), lb, ub, alpha=.1, color=color)\n",
126
+ "\n",
127
+ "\n",
128
+ "\n",
129
+ "\n",
130
+ "@torch.no_grad()\n",
131
+ "def infer(table, choice):\n",
132
+ " vfunc = np.vectorize(lambda s: len(s))\n",
133
+ " non_empty_row_mask = (vfunc(table).sum(1) != 0)\n",
134
+ " table = table[non_empty_row_mask]\n",
135
+ "\n",
136
+ " try:\n",
137
+ " table = table.astype(np.float32)\n",
138
+ " except ValueError:\n",
139
+ " return excuse, None\n",
140
+ " x = torch.tensor(table[:,0]).unsqueeze(1)\n",
141
+ " y = torch.tensor(table[:,1])\n",
142
+ " fig = plt.figure()\n",
143
+ "\n",
144
+ " if len(x) > 4:\n",
145
+ " return excuse_max_examples, None\n",
146
+ " if (x<0.).any() or (x>1.).any() or (y<-1).any() or (y>1).any():\n",
147
+ " return excuse, None\n",
148
+ "\n",
149
+ " plt.scatter(x,y)\n",
150
+ "\n",
151
+ "\n",
152
+ " \n",
153
+ " test_xs = torch.linspace(0,1,100).unsqueeze(1)\n",
154
+ " \n",
155
+ " plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_gp(x,y,test_xs), 'green')\n",
156
+ " plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_pnf(x,y,test_xs, choice), 'blue')\n",
157
+ "\n",
158
+ "\n",
159
+ " \n",
160
+ " return '', plt.gcf()\n",
161
+ "\n",
162
+ "iface = gr.Interface(fn=infer, \n",
163
+ " inputs=[\n",
164
+ " gr.inputs.Dataframe(headers=[\"x\", \"y\"], datatype=[\"number\", \"number\"], row_count=2, type='numpy', default=[['.25','.1'],['.75','.4']]),\n",
165
+ " gr.inputs.Radio(['160K','800K','4M'], type=\"value\", default='4M', label='Training Costs')\n",
166
+ " ], outputs=[\"text\",\"plot\"])\n",
167
+ "iface.launch()\n",
168
+ "\n"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": null,
174
+ "id": "a3a377e3",
175
+ "metadata": {},
176
+ "outputs": [],
177
+ "source": []
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "id": "72c0c821",
183
+ "metadata": {},
184
+ "outputs": [],
185
+ "source": []
186
+ }
187
+ ],
188
+ "metadata": {
189
+ "kernelspec": {
190
+ "display_name": "Python 3 (ipykernel)",
191
+ "language": "python",
192
+ "name": "python3"
193
+ },
194
+ "language_info": {
195
+ "codemirror_mode": {
196
+ "name": "ipython",
197
+ "version": 3
198
+ },
199
+ "file_extension": ".py",
200
+ "mimetype": "text/x-python",
201
+ "name": "python",
202
+ "nbconvert_exporter": "python",
203
+ "pygments_lexer": "ipython3",
204
+ "version": "3.9.5"
205
+ }
206
+ },
207
+ "nbformat": 4,
208
+ "nbformat_minor": 5
209
+ }
app.py CHANGED
@@ -1,7 +1,106 @@
1
  import gradio as gr
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  iface.launch()
 
 
 
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import gpytorch
5
+ import torch
6
+ import sys
7
 
8
+ import gpytorch
 
9
 
10
+ # We will use the simplest form of GP model, exact inference
11
+ class ExactGPModel(gpytorch.models.ExactGP):
12
+ def __init__(self, train_x, train_y, likelihood):
13
+ super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
14
+ self.mean_module = gpytorch.means.ConstantMean()
15
+ self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
16
+
17
+ def forward(self, x):
18
+ mean_x = self.mean_module(x)
19
+ covar_x = self.covar_module(x)
20
+ return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
21
+
22
+ def get_model(x, y, hyperparameters):
23
+ likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))
24
+ model = ExactGPModel(x, y, likelihood)
25
+ model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"]
26
+ model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"]
27
+ model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \
28
+ hyperparameters["lengthscale"]
29
+ return model, likelihood
30
+
31
+
32
+
33
+ excuse = "Please only specify numbers, x values should be in [0,1] and y values in [-1,1]."
34
+ excuse_max_examples = "This model is trained to work with up to 4 input points."
35
+ hyperparameters = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .1, 'fast_computations': (False,False,False)}
36
+
37
+
38
+ conf = .5
39
+
40
+ def mean_and_bounds_for_gp(x,y,test_xs):
41
+ gp_model, likelihood = get_model(x,y,hyperparameters)
42
+ gp_model.eval()
43
+ l = likelihood(gp_model(test_xs))
44
+ means = l.mean.squeeze()
45
+ varis = torch.diagonal(l.covariance_matrix.squeeze())
46
+ stds = varis.sqrt()
47
+ return means, means-stds, means+stds
48
+
49
+
50
+ def mean_and_bounds_for_pnf(x,y,test_xs, choice):
51
+ sys.path.append('prior-fitting/')
52
+ model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt')
53
+
54
+
55
+ logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x))
56
+ bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1)
57
+ return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1]
58
+
59
+ def plot_w_conf_interval(ax_or_plt, x, m, lb, ub, color):
60
+ ax_or_plt.plot(x.squeeze(-1),m, color=color)
61
+ ax_or_plt.fill_between(x.squeeze(-1), lb, ub, alpha=.1, color=color)
62
+
63
+
64
+
65
+
66
+ @torch.no_grad()
67
+ def infer(table, choice):
68
+ vfunc = np.vectorize(lambda s: len(s))
69
+ non_empty_row_mask = (vfunc(table).sum(1) != 0)
70
+ table = table[non_empty_row_mask]
71
+
72
+ try:
73
+ table = table.astype(np.float32)
74
+ except ValueError:
75
+ return excuse, None
76
+ x = torch.tensor(table[:,0]).unsqueeze(1)
77
+ y = torch.tensor(table[:,1])
78
+ fig = plt.figure()
79
+
80
+ if len(x) > 4:
81
+ return excuse_max_examples, None
82
+ if (x<0.).any() or (x>1.).any() or (y<-1).any() or (y>1).any():
83
+ return excuse, None
84
+
85
+ plt.scatter(x,y)
86
+
87
+
88
+
89
+ test_xs = torch.linspace(0,1,100).unsqueeze(1)
90
+
91
+ plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_gp(x,y,test_xs), 'green')
92
+ plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_pnf(x,y,test_xs, choice), 'blue')
93
+
94
+
95
+
96
+ return '', plt.gcf()
97
+
98
+ iface = gr.Interface(fn=infer,
99
+ inputs=[
100
+ gr.inputs.Dataframe(headers=["x", "y"], datatype=["number", "number"], row_count=2, type='numpy', default=[['.25','.1'],['.75','.4']]),
101
+ gr.inputs.Radio(['160K','800K','4M'], type="value", default='4M', label='Training Costs')
102
+ ], outputs=["text","plot"])
103
  iface.launch()
104
+
105
+
106
+
prior-fitting/.gitignore ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ *.py,cover
51
+ .hypothesis/
52
+ .pytest_cache/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ target/
76
+
77
+ # Jupyter Notebook
78
+ .ipynb_checkpoints
79
+
80
+ # IPython
81
+ profile_default/
82
+ ipython_config.py
83
+
84
+ # pyenv
85
+ .python-version
86
+
87
+ # pipenv
88
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
90
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
91
+ # install all needed dependencies.
92
+ #Pipfile.lock
93
+
94
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95
+ __pypackages__/
96
+
97
+ # Celery stuff
98
+ celerybeat-schedule
99
+ celerybeat.pid
100
+
101
+ # SageMath parsed files
102
+ *.sage.py
103
+
104
+ # Environments
105
+ .env
106
+ .venv
107
+ env/
108
+ venv/
109
+ ENV/
110
+ env.bak/
111
+ venv.bak/
112
+
113
+ # Spyder project settings
114
+ .spyderproject
115
+ .spyproject
116
+
117
+ # Rope project settings
118
+ .ropeproject
119
+
120
+ # mkdocs documentation
121
+ /site
122
+
123
+ # mypy
124
+ .mypy_cache/
125
+ .dmypy.json
126
+ dmypy.json
127
+
128
+ # Pyre type checker
129
+ .pyre/
prior-fitting/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # prior-fitting
prior-fitting/acquisition_functions.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from botorch.acquisition import AcquisitionFunction
2
+ from torch import Tensor
3
+
4
+
5
+ class ExpectedImprovement(AcquisitionFunction):
6
+ def forward(self, X: Tensor, best_f, maximize=True) -> Tensor: # X: evaluation_points x feature_dim
7
+ assert len(X.shape) == 2
8
+
9
+ model = self.get_submodule('model')
10
+
11
+ y = model(X)
12
+
13
+ full_range = model.full_range
14
+
15
+
16
+
17
+
18
+
prior-fitting/bar_distribution.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ from torch import nn
4
+
5
+ class BarDistribution(nn.Module):
6
+ def __init__(self, borders: torch.Tensor): # here borders should start with min and end with max, where all values lie in (min,max) and are sorted
7
+ # sorted list of borders
8
+ super().__init__()
9
+ assert len(borders.shape) == 1
10
+ #self.borders = borders
11
+ self.register_buffer('borders', borders)
12
+ #self.bucket_widths = self.borders[1:] - self.borders[:-1]
13
+ self.register_buffer('bucket_widths', self.borders[1:] - self.borders[:-1])
14
+ full_width = self.bucket_widths.sum()
15
+ assert (full_width - (self.borders[-1] - self.borders[0])).abs() < 1e-4, f'diff: {full_width - (self.borders[-1] - self.borders[0])}'
16
+ assert (torch.argsort(borders) == torch.arange(len(borders))).all(), "Please provide sorted borders!"
17
+ self.num_bars = len(borders) - 1
18
+
19
+ def map_to_bucket_idx(self, y):
20
+ target_sample = torch.searchsorted(self.borders, y) - 1
21
+ target_sample[y == self.borders[0]] = 0
22
+ target_sample[y == self.borders[-1]] = self.num_bars - 1
23
+ return target_sample
24
+
25
+ def forward(self, logits, y): # gives the negative log density (the _loss_), y: T x B, logits: T x B x self.num_bars
26
+ target_sample = self.map_to_bucket_idx(y)
27
+ assert (target_sample >= 0).all() and (target_sample < self.num_bars).all(), f'y {y} not in support set for borders (min_y, max_y) {self.borders}'
28
+ assert logits.shape[-1] == self.num_bars, f'{logits.shape[-1]} vs {self.num_bars}'
29
+
30
+ bucket_log_probs = torch.log_softmax(logits, -1)
31
+ scaled_bucket_log_probs = bucket_log_probs - torch.log(self.bucket_widths)
32
+
33
+ return -scaled_bucket_log_probs.gather(-1,target_sample.unsqueeze(-1)).squeeze(-1)
34
+
35
+ def mean(self, logits):
36
+ bucket_means = self.borders[:-1] + self.bucket_widths/2
37
+ p = torch.softmax(logits, -1)
38
+ return p @ bucket_means
39
+
40
+ def quantile(self, logits, center_prob=.682):
41
+ logits_shape = logits.shape
42
+ logits = logits.view(-1, logits.shape[-1])
43
+ side_prob = (1-center_prob)/2
44
+ probs = logits.softmax(-1)
45
+ flipped_probs = probs.flip(-1)
46
+ cumprobs = torch.cumsum(probs, -1)
47
+ flipped_cumprobs = torch.cumsum(flipped_probs, -1)
48
+
49
+ def find_lower_quantile(probs, cumprobs, side_prob, borders):
50
+ idx = (torch.searchsorted(cumprobs, side_prob)).clamp(0, len(cumprobs)-1) # this might not do the right for outliers
51
+
52
+ left_prob = cumprobs[idx-1]
53
+ rest_prob = side_prob - left_prob
54
+ left_border, right_border = borders[idx:idx+2]
55
+ return left_border + (right_border-left_border)*rest_prob/probs[idx]
56
+
57
+ results = []
58
+ for p,cp,f_p,f_cp in zip(probs, cumprobs, flipped_probs, flipped_cumprobs):
59
+ r = find_lower_quantile(p, cp, side_prob, self.borders), find_lower_quantile(f_p, f_cp, side_prob, self.borders.flip(0))
60
+ results.append(r)
61
+
62
+ return torch.tensor(results).reshape(*logits_shape[:-1],2)
63
+
64
+ def mode(self, logits):
65
+ mode_inds = logits.argmax(-1)
66
+ bucket_means = self.borders[:-1] + self.bucket_widths/2
67
+ return bucket_means[mode_inds]
68
+
69
+ def ei(self, logits, best_f, maximize=True): # logits: evaluation_points x batch x feature_dim
70
+ bucket_means = self.borders[:-1] + self.bucket_widths/2
71
+ if maximize:
72
+ bucket_contributions = torch.tensor(
73
+ [max((bucket_max + max(bucket_min, best_f)) / 2 - best_f,0) for
74
+ bucket_min, bucket_max, bucket_mean in zip(self.borders[:-1], self.borders[1:], bucket_means)], dtype=logits.dtype, device=logits.device)
75
+ else:
76
+ bucket_contributions = torch.tensor(
77
+ [-min((min(bucket_max,best_f) + bucket_min) / 2 - best_f,0) for # min on max instead of max on min, and compare min < instead of max >
78
+ bucket_min, bucket_max, bucket_mean in zip(self.borders[:-1], self.borders[1:], bucket_means)], dtype=logits.dtype, device=logits.device)
79
+ p = torch.softmax(logits, -1)
80
+ return p @ bucket_contributions
81
+
82
+
83
+ class FullSupportBarDistribution(BarDistribution):
84
+ @staticmethod
85
+ def halfnormal_with_p_weight_before(range_max,p=.5):
86
+ s = range_max / torch.distributions.HalfNormal(torch.tensor(1.)).icdf(torch.tensor(p))
87
+ return torch.distributions.HalfNormal(s)
88
+
89
+ def forward(self, logits, y): # gives the negative log density (the _loss_), y: T x B, logits: T x B x self.num_bars
90
+ assert self.num_bars > 1
91
+ target_sample = self.map_to_bucket_idx(y)
92
+ target_sample.clamp_(0,self.num_bars-1)
93
+ assert logits.shape[-1] == self.num_bars
94
+
95
+ bucket_log_probs = torch.log_softmax(logits, -1)
96
+ scaled_bucket_log_probs = bucket_log_probs - torch.log(self.bucket_widths)
97
+ #print(bucket_log_probs, logits.shape)
98
+ log_probs = scaled_bucket_log_probs.gather(-1,target_sample.unsqueeze(-1)).squeeze(-1)
99
+
100
+ side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]), self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
101
+
102
+
103
+ # TODO look over it again
104
+ log_probs[target_sample == 0] += side_normals[0].log_prob((self.borders[1]-y[target_sample == 0]).clamp(min=.00000001)) + torch.log(self.bucket_widths[0])
105
+ log_probs[target_sample == self.num_bars-1] += side_normals[1].log_prob(y[target_sample == self.num_bars-1]-self.borders[-2]) + torch.log(self.bucket_widths[-1])
106
+
107
+
108
+ return -log_probs
109
+
110
+ def mean(self, logits):
111
+ bucket_means = self.borders[:-1] + self.bucket_widths / 2
112
+ p = torch.softmax(logits, -1)
113
+ side_normals = (self.halfnormal_with_p_weight_before(self.bucket_widths[0]),
114
+ self.halfnormal_with_p_weight_before(self.bucket_widths[-1]))
115
+ bucket_means[0] = -side_normals[0].mean + self.borders[1]
116
+ bucket_means[-1] = side_normals[1].mean + self.borders[-2]
117
+ return p @ bucket_means
118
+
119
+
120
+
121
+ def get_bucket_limits(num_outputs:int, full_range:tuple=None, ys:torch.Tensor=None):
122
+ assert (ys is not None) or (full_range is not None)
123
+ if ys is not None:
124
+ ys = ys.flatten()
125
+ if len(ys) % num_outputs: ys = ys[:-(len(ys) % num_outputs)]
126
+ print(f'Using {len(ys)} y evals to estimate {num_outputs} buckets. Cut off the last {len(ys) % num_outputs} ys.')
127
+ ys_per_bucket = len(ys) // num_outputs
128
+ if full_range is None:
129
+ full_range = (ys.min(), ys.max())
130
+ else:
131
+ assert full_range[0] <= ys.min() and full_range[1] >= ys.max()
132
+ full_range = torch.tensor(full_range)
133
+ ys_sorted, ys_order = ys.sort(0)
134
+ bucket_limits = (ys_sorted[ys_per_bucket-1::ys_per_bucket][:-1]+ys_sorted[ys_per_bucket::ys_per_bucket])/2
135
+ print(full_range)
136
+ bucket_limits = torch.cat([full_range[0].unsqueeze(0), bucket_limits, full_range[1].unsqueeze(0)],0)
137
+
138
+ else:
139
+ class_width = (full_range[1] - full_range[0]) / num_outputs
140
+ bucket_limits = torch.cat([full_range[0] + torch.arange(num_outputs).float()*class_width, torch.tensor(full_range[1]).unsqueeze(0)], 0)
141
+
142
+ assert len(bucket_limits) - 1 == num_outputs and full_range[0] == bucket_limits[0] and full_range[-1] == bucket_limits[-1]
143
+ return bucket_limits
144
+
145
+
146
+
147
+
prior-fitting/decoders.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import random
4
+
5
+
6
+ class ScaledDecoder(nn.Module):
7
+ def __init__(self, ninp, nhid, nout):
8
+ super().__init__()
9
+ self.linear = nn.Linear(ninp, nhid)
10
+ self.linear1 = nn.Linear(nhid, nout)
11
+ self.linear2 = nn.Linear(nhid, 10)
12
+
13
+ def forward(self, x):
14
+ #return torch.cat([self.linear1(x), self.linear2(x)], -1)
15
+ x = self.linear(x)
16
+ x = nn.GELU()(x)
17
+ temps = self.linear2(x).softmax(-1) @ torch.tensor([1.,1.4,1.7,2.,5.,10.,20.,40.,80.,160.], device=x.device)
18
+ if random.random() > .99:
19
+ print(temps.shape,temps[:,:2])
20
+ return self.linear1(x) / temps.unsqueeze(-1)
21
+
22
+ class FixedScaledDecoder(nn.Module):
23
+ def __init__(self, ninp, nhid, nout):
24
+ super().__init__()
25
+ self.mapper = nn.Sequential(nn.Linear(ninp, nhid), nn.GELU(), nn.Linear(nhid, nout))
26
+ self.T = nn.Parameter(torch.ones(10000)/10000)
27
+
28
+ def forward(self, x):
29
+ return self.mapper(x)/self.T.sum()
30
+
prior-fitting/encoders.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from torch.nn import TransformerEncoder, TransformerEncoderLayer
7
+
8
+ class _PositionalEncoding(nn.Module):
9
+ def __init__(self, d_model, dropout=0.):
10
+ super().__init__()
11
+ self.dropout = nn.Dropout(p=dropout)
12
+ self.d_model = d_model
13
+ self.device_test_tensor = nn.Parameter(torch.tensor(1.))
14
+
15
+ def forward(self, x):# T x B x num_features
16
+ assert self.d_model % x.shape[-1]*2 == 0
17
+ d_per_feature = self.d_model // x.shape[-1]
18
+ pe = torch.zeros(*x.shape, d_per_feature, device=self.device_test_tensor.device)
19
+ #position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
20
+ interval_size = 10
21
+ div_term = (1./interval_size) * 2*math.pi*torch.exp(torch.arange(0, d_per_feature, 2, device=self.device_test_tensor.device).float()*math.log(math.sqrt(2)))
22
+ #print(div_term/2/math.pi)
23
+ pe[..., 0::2] = torch.sin(x.unsqueeze(-1) * div_term)
24
+ pe[..., 1::2] = torch.cos(x.unsqueeze(-1) * div_term)
25
+ return self.dropout(pe).view(x.shape[0],x.shape[1],self.d_model)
26
+
27
+
28
+ class EmbeddingEncoder(nn.Module):
29
+ def __init__(self, num_features, em_size, num_embs=100):
30
+ super().__init__()
31
+ self.num_embs = num_embs
32
+ self.embeddings = nn.Embedding(num_embs * num_features, em_size, max_norm=True)
33
+ self.init_weights(.1)
34
+ self.min_max = (-2,+2)
35
+
36
+ @property
37
+ def width(self):
38
+ return self.min_max[1] - self.min_max[0]
39
+
40
+ def init_weights(self, initrange):
41
+ self.embeddings.weight.data.uniform_(-initrange, initrange)
42
+
43
+ def discretize(self, x):
44
+ split_size = self.width / self.num_embs
45
+ return (x - self.min_max[0] // split_size).int().clamp(0, self.num_embs - 1)
46
+
47
+ def forward(self, x): # T x B x num_features
48
+ x_idxs = self.discretize(x)
49
+ x_idxs += torch.arange(x.shape[-1], device=x.device).view(1, 1, -1) * self.num_embs
50
+ # print(x_idxs,self.embeddings.weight.shape)
51
+ return self.embeddings(x_idxs).mean(-2)
52
+
53
+ Linear = nn.Linear
54
+ MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2),
55
+ nn.ReLU(),
56
+ nn.Linear(emsize*2,emsize))
57
+
58
+ class Conv(nn.Module):
59
+ def __init__(self, input_size, emsize):
60
+ super().__init__()
61
+ self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)])
62
+ self.linear = nn.Linear(64,emsize)
63
+
64
+
65
+ def forward(self, x):
66
+ size = math.isqrt(x.shape[-1])
67
+ assert size*size == x.shape[-1]
68
+ x = x.reshape(*x.shape[:-1], 1, size, size)
69
+ for conv in self.convs:
70
+ if x.shape[-1] < 4:
71
+ break
72
+ x = conv(x)
73
+ x.relu_()
74
+ x = nn.AdaptiveAvgPool2d((1,1))(x).squeeze(-1).squeeze(-1)
75
+ return self.linear(x)
76
+
77
+
78
+ Positional = lambda _, emsize: _PositionalEncoding(d_model=emsize)
79
+
80
+
81
+ class CanEmb(nn.Embedding):
82
+ def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs):
83
+ assert embedding_dim % num_features == 0
84
+ embedding_dim = embedding_dim // num_features
85
+ super().__init__(num_embeddings, embedding_dim, *args, **kwargs)
86
+
87
+ def forward(self, x):
88
+ x = super().forward(x)
89
+ return x.view(*x.shape[:-2], -1)
90
+
91
+ def get_Canonical(num_classes):
92
+ return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize)
93
+
94
+ def get_Embedding(num_embs_per_feature=100):
95
+ return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)
prior-fitting/losses.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class ScaledSoftmaxCE(nn.Module):
6
+ def forward(self, x, label):
7
+ logits = x[..., :-10]
8
+ temp_scales = x[..., -10:]
9
+
10
+
11
+
12
+ logprobs = logits.softmax(-1)
prior-fitting/mcmc_svi_transformer_on_bayesian.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import scipy.stats as st
2
+ from train import Losses
3
+ import argparse
4
+
5
+ import os
6
+
7
+ from tqdm import tqdm
8
+ import time
9
+
10
+ import torch
11
+ import numpy as np
12
+ import matplotlib.pyplot as plt
13
+
14
+ import pyro
15
+ import pyro.distributions as dist
16
+ from pyro.nn import PyroModule, PyroSample
17
+ import torch.nn as nn
18
+ from pyro.infer.autoguide import AutoDiagonalNormal
19
+ from pyro.infer import SVI, Trace_ELBO, Predictive, MCMC, NUTS
20
+ from pyro import infer
21
+ import matplotlib.gridspec as gridspec
22
+ import os.path
23
+ import glob
24
+ from train import train, get_weighted_single_eval_pos_sampler
25
+ import priors
26
+ import encoders
27
+ from pyro.infer import SVGD, RBFSteinKernel
28
+
29
+ class CausalModel(PyroModule):
30
+ def __init__(self, model_spec, device='cuda'):
31
+ super().__init__()
32
+
33
+ self.device = device
34
+ self.num_features = model_spec['num_features']
35
+
36
+ mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
37
+
38
+ self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
39
+ self.drop = pyro.sample('drop', dist.Categorical(probs=torch.tensor([0.5, 0.5]).expand([model_spec['embed'], self.num_features, 2]))).float()
40
+ self.fc1.weight = PyroSample(dist.Normal(mu, 0.0000001+self.drop).expand([model_spec['embed'], self.num_features]).to_event(2))
41
+ self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
42
+
43
+ self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
44
+ self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
45
+ self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
46
+
47
+ self.model = torch.nn.Sequential(self.fc1, self.fc2)
48
+
49
+ self.to(self.device)
50
+
51
+ def forward(self, x=None, y=None, seq_len=1):
52
+ if x is None:
53
+ with pyro.plate("x_plate", seq_len):
54
+ d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
55
+ [self.num_features]).to_event(1)
56
+ x = pyro.sample("x", d_)
57
+
58
+ out = self.model(x)
59
+ mu = out.squeeze()
60
+ softmax = torch.nn.Softmax(dim=1)
61
+ # sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
62
+ with pyro.plate("data", out.shape[0]):
63
+ # d_ = dist.Normal(mu, sigma)
64
+ # obs = pyro.sample("obs", d_, obs=y)
65
+ s = softmax(mu)
66
+ obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
67
+
68
+ return x, obs
69
+
70
+ class BayesianModel(PyroModule):
71
+ def __init__(self, model_spec, device='cuda'):
72
+ super().__init__()
73
+
74
+ self.device = device
75
+ self.num_features = model_spec['num_features']
76
+
77
+ mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
78
+
79
+ self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
80
+ self.fc1.weight = PyroSample(
81
+ dist.Normal(mu, sigma).expand([model_spec['embed'], self.num_features]).to_event(2))
82
+ self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
83
+
84
+ self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
85
+ self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
86
+ self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
87
+
88
+ self.model = torch.nn.Sequential(self.fc1, self.fc2)
89
+
90
+ self.to(self.device)
91
+
92
+ def forward(self, x=None, y=None, seq_len=1):
93
+ if x is None:
94
+ with pyro.plate("x_plate", seq_len):
95
+ d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
96
+ [self.num_features]).to_event(1)
97
+ x = pyro.sample("x", d_)
98
+
99
+ out = self.model(x)
100
+ mu = out.squeeze()
101
+ softmax = torch.nn.Softmax(dim=1)
102
+ # sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
103
+ with pyro.plate("data", out.shape[0]):
104
+ # d_ = dist.Normal(mu, sigma)
105
+ # obs = pyro.sample("obs", d_, obs=y)
106
+ s = softmax(mu)
107
+ obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
108
+
109
+ return x, obs
110
+
111
+
112
+ def get_transformer_config(model_spec):
113
+ return {'lr': 2.006434218345026e-05
114
+ , 'epochs': 400
115
+ , 'dropout': 0.0
116
+ , 'emsize': 256
117
+ , 'batch_size': 256
118
+ , 'nlayers': 5
119
+ , 'num_outputs': 1
120
+ , 'num_features': model_spec['num_features']
121
+ , 'steps_per_epoch': 100
122
+ , 'nhead': 4
123
+ , 'dropout': 0.0
124
+ , 'seq_len': model_spec['seq_len']
125
+ , 'nhid_factor': 2}
126
+
127
+
128
+ def get_model(model_generator, config, should_train=True, device='cuda'):
129
+ epochs = 0 if not should_train else config['epochs']
130
+
131
+ model = train(priors.pyro.DataLoader
132
+ , Losses.bce
133
+ , encoders.Linear
134
+ , emsize=config['emsize']
135
+ , nhead=config['nhead']
136
+ , y_encoder_generator=encoders.Linear
137
+ , pos_encoder_generator=None
138
+ , batch_size=config['batch_size']
139
+ , nlayers=config['nlayers']
140
+ , nhid=config['emsize'] * config['nhid_factor']
141
+ , epochs=epochs
142
+ , warmup_epochs=config['epochs'] // 4
143
+ , bptt=config['seq_len']
144
+ , gpu_device=device
145
+ , dropout=config['dropout']
146
+ , steps_per_epoch=config['steps_per_epoch']
147
+ , single_eval_pos_gen=get_weighted_single_eval_pos_sampler(100)
148
+ , extra_prior_kwargs_dict={
149
+ 'num_outputs': config['num_outputs']
150
+ , 'num_features': config['num_features']
151
+ , 'canonical_args': None
152
+ , 'fuse_x_y': False
153
+ , 'model': model_generator
154
+ }
155
+ , lr=config['lr']
156
+ , verbose=True)
157
+
158
+ return model
159
+
160
+
161
+
162
+ def plot_features(data, targets):
163
+ fig2 = plt.figure(constrained_layout=True, figsize=(12, 12))
164
+ spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
165
+ for d in range(0, data.shape[1]):
166
+ for d2 in range(0, data.shape[1]):
167
+ sub_ax = fig2.add_subplot(spec2[d, d2])
168
+ sub_ax.scatter(data[:, d].detach().cpu().numpy(), data[:, d2].detach().cpu().numpy(),
169
+ c=targets[:].detach().cpu().numpy())
170
+
171
+
172
+ def evaluate_preds(preds, y_test):
173
+ preds_hard = preds['obs'] > 0.5 # TODO: 0.5 or 0
174
+ acc = (preds_hard == y_test).float().mean()
175
+ means = preds_hard.float().mean(axis=0)
176
+
177
+ # var = preds['obs'].var(axis=0)
178
+ nll = nn.BCELoss()(means.float(), y_test.float())
179
+ mse = Losses.mse(means, y_test).mean()
180
+
181
+ return acc, nll, mse
182
+
183
+
184
+ def load_results(path, task='steps'):
185
+ results_nll = []
186
+ results_acc = []
187
+ times = []
188
+ samples_list = []
189
+
190
+ files = glob.glob(f'/home/hollmann/prior-fitting/{path}_*.npy')
191
+ for file in files:
192
+ print(file)
193
+ with open(file, 'rb') as f:
194
+ if task == 'steps':
195
+ nll, acc, elapsed = np.load(f, allow_pickle=True)
196
+ samples_list += [file]
197
+ else:
198
+ samples, nll, acc, elapsed = np.load(f, allow_pickle=True)
199
+ samples_list += [samples]
200
+ times += [elapsed]
201
+ results_nll += [nll]
202
+ results_acc += [acc]
203
+ results_acc = np.array(results_acc)
204
+ results_nll = np.array(results_nll)
205
+ times = np.array(times)
206
+ files = np.array(files)
207
+ samples = np.array(samples_list)
208
+ means = np.array([compute_mean_and_conf_interval(results_nll[n, :])[0] for n in range(0, results_nll.shape[0])])
209
+ conf = np.array([compute_mean_and_conf_interval(results_nll[n, :])[1] for n in range(0, results_nll.shape[0])])
210
+
211
+ if task == 'steps':
212
+ sorter = np.argsort(times, axis=0)
213
+ else:
214
+ sorter = np.argsort(samples, axis=0)
215
+
216
+ results_nll, results_acc, times, files, samples, means, conf = results_nll[sorter], results_acc[sorter], times[sorter], files[sorter], samples[sorter], means[sorter], conf[sorter]
217
+
218
+ return files, times, samples, means, conf
219
+
220
+ def plot_with_confidence_intervals(ax_or_pyplot, x, mean, confidence, **common_kwargs):
221
+ ax_or_pyplot.plot(x,mean,**common_kwargs)
222
+ if 'label' in common_kwargs:
223
+ common_kwargs.pop('label')
224
+ if 'marker' in common_kwargs:
225
+ common_kwargs.pop('marker')
226
+ ax_or_pyplot.fill_between(x, (mean-confidence), (mean+confidence), alpha=.1, **common_kwargs)
227
+
228
+
229
+ def compute_mean_and_conf_interval(accuracies, confidence=.95):
230
+ accuracies = np.array(accuracies)
231
+ n = len(accuracies)
232
+ m, se = np.mean(accuracies), st.sem(accuracies)
233
+ h = se * st.t.ppf((1 + confidence) / 2., n - 1)
234
+ return m, h
235
+
236
+
237
+ def generate_toy_data(model, bptt, device='cpu'):
238
+ n_samples = 100
239
+ X_list, y_list = [], []
240
+ torch.manual_seed(0)
241
+ for _ in range(0, n_samples):
242
+ X_sample, y_sample = model(seq_len=bptt)
243
+ X_list += [X_sample]
244
+ y_list += [y_sample]
245
+ X = torch.stack(X_list, 0)
246
+ y = torch.stack(y_list, 0)
247
+ # y = (y > 0).float()
248
+
249
+ return X.to(device), y.to(device)
250
+
251
+
252
+
253
+ def eval_svi(X, y, device, model_sampler, training_samples_n, num_train_steps, num_pred_samples, lr=1e-3, num_particles=1, svgd=False):
254
+ X_test, y_test = X[:, training_samples_n:], y[:, training_samples_n:]
255
+ X_train, y_train = X[:, 0:training_samples_n], y[:, 0:training_samples_n]
256
+
257
+ nll_list = []
258
+ acc_list = []
259
+ for sample_id in tqdm(list(range(0, X_test.shape[0]))):
260
+ model = model_sampler()
261
+ guide = AutoDiagonalNormal(model).to(device)
262
+ adam = pyro.optim.Adam({"lr": lr})
263
+ svi = SVI(model, guide, adam, loss=Trace_ELBO(num_particles=num_particles))
264
+
265
+ if svgd:
266
+ kernel = RBFSteinKernel()
267
+ svi = SVGD(model, kernel, adam, num_particles=50, max_plate_nesting=0)
268
+
269
+ pyro.clear_param_store()
270
+
271
+ X_test_sample, y_test_sample, X_train_sample, y_train_sample = X_test[sample_id], y_test[sample_id], X_train[
272
+ sample_id], y_train[sample_id]
273
+
274
+ acc, nll, mse = 0.0, 0.0, 0.0
275
+ # bar = tqdm(list(range(num_train_steps)))
276
+ bar = list(range(num_train_steps))
277
+ for epoch in bar:
278
+ loss = svi.step(X_train_sample, y_train_sample)
279
+ # if epoch % 100 == 1:
280
+ # bar.set_postfix(loss=f'{loss / X_train_sample.shape[0]:.3f}', test_nll=f'{nll:.3f}', test_acc=f'{acc:.3f}')
281
+
282
+ predictive = Predictive(model, guide=guide, num_samples=num_pred_samples)
283
+ preds = predictive(X_test_sample)
284
+ acc, nll, mse = evaluate_preds(preds, y_test_sample)
285
+ nll_list += [nll.detach().cpu().numpy()]
286
+ acc_list += [acc.detach().cpu().numpy()]
287
+
288
+ return np.array(nll_list), np.array(acc_list)
289
+
290
+
291
+ def eval_mcmc(X, y, device, model_sampler, training_samples_n, warmup_steps, num_pred_samples):
292
+ X_test, y_test = X[:, training_samples_n:].to(device), y[:, training_samples_n:].to(device)
293
+ X_train, y_train = X[:, 0:training_samples_n].to(device), y[:, 0:training_samples_n].to(device)
294
+
295
+ acc_list, nll_list = [], []
296
+ for sample_id in tqdm(list(range(0, X_test.shape[0]))):
297
+ X_test_sample, y_test_sample, X_train_sample, y_train_sample = X_test[sample_id], y_test[sample_id], X_train[
298
+ sample_id], y_train[sample_id]
299
+
300
+ model = model_sampler()
301
+ mcmc = MCMC(NUTS(model), num_samples=num_pred_samples, num_chains=1, disable_progbar=True,
302
+ warmup_steps=warmup_steps, mp_context="fork")
303
+ mcmc.run(X_train_sample, y_train_sample)
304
+ preds = infer.mcmc.util.predictive(model, mcmc.get_samples(), X_test_sample, None)
305
+ acc, nll, mse = evaluate_preds(preds, y_test_sample)
306
+ nll_list += [nll.detach().cpu().numpy()]
307
+ acc_list += [acc.detach().cpu().numpy()]
308
+
309
+ return np.array(nll_list), np.array(acc_list)
310
+
311
+
312
+ def eval_transformer(X, y, device, model, training_samples_n):
313
+ X_sample, y_sample = X.transpose(0, 1), y.transpose(0, 1).float()
314
+ bs = 1
315
+ samples = []
316
+ for i in range(0, X_sample.shape[1] // bs):
317
+ samples += [(X_sample[:, bs * i:bs * (i + 1)], y_sample[:, bs * i:bs * (i + 1)])]
318
+
319
+ mean = X_sample[:training_samples_n].mean(0)
320
+ std = X_sample[:training_samples_n].std(0) + .000001
321
+ X_sample = (X_sample - mean) / std
322
+
323
+ start = time.time()
324
+ output = torch.cat(
325
+ [model.to(device)((X_sample_chunk, y_sample_chunk), single_eval_pos=training_samples_n).squeeze(-1) for
326
+ (X_sample_chunk, y_sample_chunk) in samples], 1)
327
+ elapsed = time.time() - start
328
+
329
+ output = output.detach().cpu()
330
+ acc = ((torch.sigmoid(output) > 0.5) == y_sample[training_samples_n:].cpu().bool()).float().mean(axis=0)
331
+ nll = nn.BCELoss(reduction='none')(torch.sigmoid(output.float()), y_sample[training_samples_n:].cpu().float()).mean(
332
+ axis=0)
333
+ return acc, nll, elapsed
334
+
335
+
336
+ def training_steps(method, X, y, model_spec, device='cpu', path_interfix='', overwrite=False):
337
+ training_samples_n = 100
338
+ for s in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]:
339
+ path = f'/home/hollmann/prior-fitting/{path_interfix}/results_{method}_training_steps_{s}.npy'
340
+ if (os.path.isfile(path)) and not overwrite:
341
+ print(f'already done {s}')
342
+ continue
343
+
344
+ start = time.time()
345
+ if method == 'svi':
346
+ nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=s, num_pred_samples=s, svgd=False)
347
+ elif method == 'svgd':
348
+ nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=s, num_pred_samples=s, svgd=True)
349
+ elif method == 'mcmc':
350
+ nll, acc = eval_mcmc(X, y, device, model_spec, training_samples_n, warmup_steps=s, num_pred_samples=s)
351
+ elapsed = time.time() - start
352
+
353
+ print(s)
354
+ print('NLL ', compute_mean_and_conf_interval(nll))
355
+ print('ACC ', compute_mean_and_conf_interval(acc))
356
+ print('TIME ', elapsed)
357
+
358
+ with open(path, 'wb') as f:
359
+ np.save(f, (np.array(nll), np.array(acc), elapsed))
360
+
361
+ print(f'Saved results at {path}')
362
+
363
+
364
+ def training_samples(method, X, y, model_spec, evaluation_points, steps = None, device='cpu', path_interfix='', overwrite=False):
365
+ num_pred_samples_mcmc = steps if steps else 512
366
+ warmup_steps = steps if steps else 512
367
+
368
+ num_pred_samples_svi = steps if steps else 1024
369
+ num_train_steps = steps if steps else 1024
370
+
371
+ num_pred_samples = num_pred_samples_svi if method == 'svi' else num_pred_samples_mcmc
372
+
373
+ for training_samples_n in evaluation_points:
374
+ path = f'/home/hollmann/prior-fitting/{path_interfix}/results_{method}_{num_pred_samples}_training_samples_{training_samples_n}.npy'
375
+ if (os.path.isfile(path)) and not overwrite:
376
+ print(f'already done {training_samples_n}')
377
+ continue
378
+
379
+ start = time.time()
380
+ if method == 'svi':
381
+ nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=num_train_steps, num_pred_samples=num_pred_samples)
382
+ elif method == 'svgd':
383
+ nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=num_train_steps, num_pred_samples=num_pred_samples, svgd=True)
384
+ elif method == 'mcmc':
385
+ nll, acc = eval_mcmc(X, y, device, model_spec, training_samples_n, warmup_steps=warmup_steps, num_pred_samples=num_pred_samples)
386
+ elapsed = time.time() - start
387
+
388
+ print('NLL ', compute_mean_and_conf_interval(nll))
389
+ print('ACC ', compute_mean_and_conf_interval(acc))
390
+ print('TIME ', elapsed)
391
+
392
+ with open(path, 'wb') as f:
393
+ np.save(f, (training_samples_n, np.array(nll), np.array(acc), elapsed))
394
+
395
+ ### MAIN
396
+ def get_default_model_spec(size):
397
+ bptt = 300
398
+
399
+ if size == 'big':
400
+ num_features = 8
401
+ embed = 64
402
+ nlayers = 2
403
+ elif size == 'small':
404
+ num_features = 3
405
+ embed = 5
406
+ nlayers = 2
407
+ else:
408
+ num_features = int(size.split("_")[0])
409
+ embed = int(size.split("_")[1])
410
+ nlayers = int(size.split("_")[2])
411
+
412
+ return {'nlayers': nlayers, 'embed': embed, 'num_features': num_features, "seq_len": bptt}
413
+
414
+ def get_default_evaluation_points():
415
+ return list(range(2, 100, 5))
416
+
417
+ if __name__ == '__main__':
418
+ parser = argparse.ArgumentParser()
419
+ parser.add_argument('--solver', default='svi', type=str)
420
+ parser.add_argument('--task', default='steps', type=str)
421
+ parser.add_argument('--model_size', default='small', type=str)
422
+
423
+ args = parser.parse_args()
424
+
425
+ model_spec = get_default_model_spec(args.model_size)
426
+ evaluation_points = get_default_evaluation_points()
427
+ device = 'cuda:0' if args.solver == 'svi' else 'cpu'
428
+
429
+ torch.manual_seed(0)
430
+ test_model = BayesianModel(model_spec, device=device)
431
+
432
+ X, y = generate_toy_data(test_model, model_spec['seq_len'])
433
+ model_sampler = lambda: BayesianModel(model_spec, device=device)
434
+
435
+ if args.task == 'steps':
436
+ training_steps(args.solver, X, y, model_sampler, device=device,
437
+ path_interfix=f'results/timing_{args.model_size}_model', svgd=args.svgd)
438
+ elif args.task == 'samples':
439
+ training_samples(args.solver, X, y, model_sampler, evaluation_points, device=device,
440
+ path_interfix=f'results/timing_{args.model_size}_model', svgd=args.svgd)
441
+
442
+
443
+
prior-fitting/notebooks/BayesianModels_And_Custom_Pyro_Modules.ipynb ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 56,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import torch\n",
10
+ "import numpy as np\n",
11
+ "\n",
12
+ "import priors\n",
13
+ "from train import train, get_weighted_single_eval_pos_sampler\n",
14
+ "import encoders\n",
15
+ "import positional_encodings\n",
16
+ "import utils\n",
17
+ "import bar_distribution\n",
18
+ "import decoders\n",
19
+ "from datasets import *\n",
20
+ "import os\n",
21
+ "\n",
22
+ "from tqdm import tqdm\n",
23
+ "import time\n",
24
+ "\n",
25
+ "import torch\n",
26
+ "import pandas as pd\n",
27
+ "import numpy as np\n",
28
+ "import matplotlib.pyplot as plt\n",
29
+ "\n",
30
+ "import torch.nn as nn\n",
31
+ "import os.path\n",
32
+ "import glob\n",
33
+ "\n",
34
+ "from mcmc_svi_transformer_on_bayesian import get_model, get_default_model_spec, generate_toy_data, load_results, plot_with_confidence_intervals, training_steps, training_samples, get_default_evaluation_points, compute_mean_and_conf_interval, eval_transformer\n"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 4,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "# %load_ext autoreload\n",
44
+ "\n",
45
+ "# %autoreload 2"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": 3,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "## DEFINE A PRIOR MODEL ##\n",
55
+ "# We define a Bayesian Model as a prior for all methods\n",
56
+ "# This can be replaced by other models that inherit from PyroModule.\n",
57
+ "class BayesianModel(PyroModule):\n",
58
+ " def __init__(self, model_spec, device='cuda'):\n",
59
+ " super().__init__()\n",
60
+ "\n",
61
+ " self.device = device\n",
62
+ " self.num_features = model_spec['num_features']\n",
63
+ "\n",
64
+ " mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)\n",
65
+ "\n",
66
+ " self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])\n",
67
+ " self.fc1.weight = PyroSample(\n",
68
+ " dist.Normal(mu, sigma).expand([model_spec['embed'], self.num_features]).to_event(2))\n",
69
+ " self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))\n",
70
+ "\n",
71
+ " self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)\n",
72
+ " self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))\n",
73
+ " self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))\n",
74
+ "\n",
75
+ " self.model = torch.nn.Sequential(self.fc1, self.fc2)\n",
76
+ "\n",
77
+ " self.to(self.device)\n",
78
+ "\n",
79
+ " def forward(self, x=None, y=None, seq_len=1):\n",
80
+ " if x is None:\n",
81
+ " with pyro.plate(\"x_plate\", seq_len):\n",
82
+ " d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(\n",
83
+ " [self.num_features]).to_event(1)\n",
84
+ " x = pyro.sample(\"x\", d_)\n",
85
+ "\n",
86
+ " out = self.model(x)\n",
87
+ " mu = out.squeeze()\n",
88
+ " softmax = torch.nn.Softmax(dim=1)\n",
89
+ " with pyro.plate(\"data\", out.shape[0]):\n",
90
+ " s = softmax(mu)\n",
91
+ " obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()\n",
92
+ "\n",
93
+ " return x, obs"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 69,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "results_directory = 'results' # Where to save results\n",
103
+ "model_spec_size = 'small' # Size of the BNN model to evaluate, also try big\n",
104
+ "bptt = 100 # Number of samples in each dataset\n",
105
+ "\n",
106
+ "# Training samples seen after which to evaluate the methods\n",
107
+ "evaluation_points = [2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92]\n",
108
+ "\n",
109
+ "# Function which generates a model from the prior\n",
110
+ "model_sampler = lambda : BayesianModel(get_default_model_spec(model_spec_size), device = device)\n",
111
+ "\n",
112
+ "global_results = {} # Dict in which to save results\n",
113
+ "task = 'samples' # Task to evaluate, only option is samples, keep fixed"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "!mkdir {results_directory}"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "markdown",
127
+ "metadata": {
128
+ "heading_collapsed": true
129
+ },
130
+ "source": [
131
+ "### Evaluate SVI and MCMC"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": 25,
137
+ "metadata": {
138
+ "hidden": true
139
+ },
140
+ "outputs": [],
141
+ "source": [
142
+ "method = 'svi'\n",
143
+ "steps = 1\n",
144
+ "device = 'cuda'\n",
145
+ "path_interfix = f'{results_directory}/timing_{model_spec_size}_model_test'"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": 26,
151
+ "metadata": {
152
+ "hidden": true
153
+ },
154
+ "outputs": [],
155
+ "source": [
156
+ "!mkdir {path_interfix}"
157
+ ]
158
+ },
159
+ {
160
+ "cell_type": "code",
161
+ "execution_count": 27,
162
+ "metadata": {
163
+ "hidden": true
164
+ },
165
+ "outputs": [
166
+ {
167
+ "name": "stderr",
168
+ "output_type": "stream",
169
+ "text": [
170
+ "100%|██████████| 100/100 [00:02<00:00, 37.13it/s]\n",
171
+ "/home/hollmann/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/numpy/lib/npyio.py:528: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
172
+ " arr = np.asanyarray(arr)\n"
173
+ ]
174
+ },
175
+ {
176
+ "name": "stdout",
177
+ "output_type": "stream",
178
+ "text": [
179
+ "NLL (51.540817, 1.832436208065078)\n",
180
+ "ACC (0.48459178, 0.01832436154844232)\n",
181
+ "TIME 2.6950523853302\n"
182
+ ]
183
+ },
184
+ {
185
+ "name": "stderr",
186
+ "output_type": "stream",
187
+ "text": [
188
+ "100%|██████████| 100/100 [00:02<00:00, 35.89it/s]\n"
189
+ ]
190
+ },
191
+ {
192
+ "name": "stdout",
193
+ "output_type": "stream",
194
+ "text": [
195
+ "NLL (48.569893, 1.8696300575034437)\n",
196
+ "ACC (0.51430106, 0.01869630134377999)\n",
197
+ "TIME 2.788970708847046\n"
198
+ ]
199
+ },
200
+ {
201
+ "name": "stderr",
202
+ "output_type": "stream",
203
+ "text": [
204
+ "100%|██████████| 100/100 [00:03<00:00, 31.80it/s]\n"
205
+ ]
206
+ },
207
+ {
208
+ "name": "stdout",
209
+ "output_type": "stream",
210
+ "text": [
211
+ "NLL (51.034092, 1.807273770560027)\n",
212
+ "ACC (0.48965907, 0.018072737823868815)\n",
213
+ "TIME 3.1472866535186768\n"
214
+ ]
215
+ },
216
+ {
217
+ "name": "stderr",
218
+ "output_type": "stream",
219
+ "text": [
220
+ "100%|██████████| 100/100 [00:02<00:00, 38.48it/s]\n"
221
+ ]
222
+ },
223
+ {
224
+ "name": "stdout",
225
+ "output_type": "stream",
226
+ "text": [
227
+ "NLL (50.216866, 2.0121896389094833)\n",
228
+ "ACC (0.4978313, 0.02012189562034928)\n",
229
+ "TIME 2.600956439971924\n"
230
+ ]
231
+ },
232
+ {
233
+ "name": "stderr",
234
+ "output_type": "stream",
235
+ "text": [
236
+ " 55%|█████▌ | 55/100 [00:01<00:01, 38.41it/s]\n"
237
+ ]
238
+ },
239
+ {
240
+ "ename": "KeyboardInterrupt",
241
+ "evalue": "",
242
+ "output_type": "error",
243
+ "traceback": [
244
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
245
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
246
+ "\u001b[0;32m/tmp/ipykernel_9449/1948451174.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgenerate_toy_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_model\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbptt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m training_samples(method\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
247
+ "\u001b[0;32m~/prior-fitting/mcmc_svi_transformer_on_bayesian.py\u001b[0m in \u001b[0;36mtraining_samples\u001b[0;34m(method, X, y, model_spec, evaluation_points, steps, device, path_interfix, overwrite)\u001b[0m\n\u001b[1;32m 379\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svi'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 381\u001b[0;31m \u001b[0mnll\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0macc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0meval_svi\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_spec\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtraining_samples_n\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_train_steps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnum_train_steps\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_pred_samples\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnum_pred_samples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 382\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svgd'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[0mnll\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0macc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0meval_svi\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_spec\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtraining_samples_n\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_train_steps\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnum_train_steps\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_pred_samples\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnum_pred_samples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msvgd\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
248
+ "\u001b[0;32m~/prior-fitting/mcmc_svi_transformer_on_bayesian.py\u001b[0m in \u001b[0;36meval_svi\u001b[0;34m(X, y, device, model_sampler, training_samples_n, num_train_steps, num_pred_samples, lr, num_particles, svgd)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0mpredictive\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPredictive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mguide\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mguide\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_samples\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnum_pred_samples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m \u001b[0mpreds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpredictive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test_sample\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 284\u001b[0m \u001b[0macc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnll\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmse\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate_preds\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpreds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test_sample\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mnll_list\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mnll\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetach\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcpu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
249
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1049\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1050\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
250
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/infer/predictive.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 271\u001b[0m \u001b[0mmodel_kwargs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 272\u001b[0m )\n\u001b[0;32m--> 273\u001b[0;31m return _predictive(\n\u001b[0m\u001b[1;32m 274\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[0mposterior_samples\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
251
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/infer/predictive.py\u001b[0m in \u001b[0;36m_predictive\u001b[0;34m(model, posterior_samples, num_samples, return_sites, return_trace, parallel, model_args, model_kwargs)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mparallel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m return _predictive_sequential(\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mposterior_samples\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
252
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/infer/predictive.py\u001b[0m in \u001b[0;36m_predictive_sequential\u001b[0;34m(model, posterior_samples, model_args, model_kwargs, num_samples, return_site_shapes, return_trace)\u001b[0m\n\u001b[1;32m 46\u001b[0m ]\n\u001b[1;32m 47\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum_samples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 48\u001b[0;31m trace = poutine.trace(poutine.condition(model, samples[i])).get_trace(\n\u001b[0m\u001b[1;32m 49\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mmodel_kwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m )\n",
253
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/poutine/trace_messenger.py\u001b[0m in \u001b[0;36mget_trace\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 196\u001b[0m \u001b[0mCalls\u001b[0m \u001b[0mthis\u001b[0m \u001b[0mpoutine\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mreturns\u001b[0m \u001b[0mits\u001b[0m \u001b[0mtrace\u001b[0m \u001b[0minstead\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mfunction\u001b[0m\u001b[0;31m'\u001b[0m\u001b[0ms\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 197\u001b[0m \"\"\"\n\u001b[0;32m--> 198\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 199\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmsngr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
254
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/poutine/trace_messenger.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 172\u001b[0m )\n\u001b[1;32m 173\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 174\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 175\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mexc_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_value\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtraceback\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
255
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/poutine/messenger.py\u001b[0m in \u001b[0;36m_context_wrap\u001b[0;34m(context, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_context_wrap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
256
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/autograd/grad_mode.py\u001b[0m in \u001b[0;36mdecorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
257
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/poutine/messenger.py\u001b[0m in \u001b[0;36m_context_wrap\u001b[0;34m(context, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_context_wrap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
258
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/nn/module.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 424\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pyro_context\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 426\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 428\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
259
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1049\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1050\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
260
+ "\u001b[0;32m/tmp/ipykernel_9449/3309204952.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, x, y, seq_len)\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpyro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"x\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0md_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 31\u001b[0m \u001b[0mmu\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqueeze\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0msoftmax\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSoftmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
261
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1049\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1050\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
262
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/modules/container.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0minput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 140\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
263
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/nn/module.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 424\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pyro_context\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 426\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 428\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
264
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1049\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1050\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1051\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1052\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1053\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
265
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/modules/linear.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 96\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 97\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextra_repr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
266
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/nn/module.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 477\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprior\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"sample\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# if not a distribution\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 478\u001b[0m \u001b[0mprior\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprior\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 479\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpyro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfullname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprior\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 480\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfullname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
267
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/primitives.py\u001b[0m in \u001b[0;36msample\u001b[0;34m(name, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 162\u001b[0m }\n\u001b[1;32m 163\u001b[0m \u001b[0;31m# apply the stack and return its return value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 164\u001b[0;31m \u001b[0mapply_stack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 165\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"value\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 166\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
268
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/poutine/runtime.py\u001b[0m in \u001b[0;36mapply_stack\u001b[0;34m(initial_msg)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0mpointer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpointer\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_process_message\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmsg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"stop\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
269
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/pyro/poutine/messenger.py\u001b[0m in \u001b[0;36m_process_message\u001b[0;34m(self, msg)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0mon\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0mThe\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mupdated\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mplace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \"\"\"\n\u001b[0;32m--> 141\u001b[0;31m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"_pyro_{}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"type\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 142\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
270
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
271
+ ]
272
+ }
273
+ ],
274
+ "source": [
275
+ "X, y = generate_toy_data(test_model, bptt, device)\n",
276
+ "\n",
277
+ "training_samples(method\n",
278
+ " , X\n",
279
+ " , y\n",
280
+ " , model_sampler\n",
281
+ " , evaluation_points\n",
282
+ " , steps=steps\n",
283
+ " , device=device\n",
284
+ " , path_interfix=path_interfix)"
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "markdown",
289
+ "metadata": {
290
+ "heading_collapsed": true
291
+ },
292
+ "source": [
293
+ "### Training Transformer on Prior (Skip this step to reuse results)"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": 41,
299
+ "metadata": {
300
+ "hidden": true
301
+ },
302
+ "outputs": [],
303
+ "source": [
304
+ "device = 'cuda'"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": 49,
310
+ "metadata": {
311
+ "hidden": true
312
+ },
313
+ "outputs": [],
314
+ "source": [
315
+ "config = {'lr': 2.006434218345026e-05\n",
316
+ " , 'epochs': 160\n",
317
+ " , 'dropout': 0.0\n",
318
+ " , 'emsize': 256\n",
319
+ " , 'batch_size': 256\n",
320
+ " , 'nlayers': 5\n",
321
+ " , 'num_outputs': 1\n",
322
+ " , 'num_features': model_spec['num_features']\n",
323
+ " , 'steps_per_epoch': 100\n",
324
+ " , 'nhead': 4\n",
325
+ " , 'dropout': 0.0\n",
326
+ " , 'seq_len': model_spec['seq_len']\n",
327
+ " , 'nhid_factor': 2}"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": 51,
333
+ "metadata": {
334
+ "hidden": true
335
+ },
336
+ "outputs": [
337
+ {
338
+ "name": "stdout",
339
+ "output_type": "stream",
340
+ "text": [
341
+ "Using cuda device\n",
342
+ "DataLoader.__dict__ {'num_steps': 100, 'fuse_x_y': False, 'get_batch_kwargs': {'batch_size': 256, 'seq_len': 300, 'num_outputs': 1, 'num_features': 3, 'canonical_args': None, 'model': <function <lambda> at 0x7f6f42f49f70>}, 'num_features': 3, 'num_outputs': 1}\n"
343
+ ]
344
+ },
345
+ {
346
+ "ename": "KeyboardInterrupt",
347
+ "evalue": "",
348
+ "output_type": "error",
349
+ "traceback": [
350
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
351
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
352
+ "\u001b[0;32m/tmp/ipykernel_9449/1283571267.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtransformer_model\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_sampler\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshould_train\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mmodel_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresults_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf'bayesian_models_transformer_checkpoint_{model_spec_size}_epochs_'\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'epochs'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m'.cpkt'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtransformer_model\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
353
+ "\u001b[0;32m~/prior-fitting/mcmc_svi_transformer_on_bayesian.py\u001b[0m in \u001b[0;36mget_model\u001b[0;34m(model_generator, config, should_train, device)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mepochs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mshould_train\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'epochs'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m model = train(priors.pyro.DataLoader\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mLosses\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbce\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mencoders\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLinear\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
354
+ "\u001b[0;32m~/prior-fitting/train.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(priordataloader_class, criterion, encoder_generator, emsize, nhid, nlayers, nhead, dropout, epochs, steps_per_epoch, batch_size, bptt, lr, warmup_epochs, input_normalization, y_encoder_generator, pos_encoder_generator, decoder, extra_prior_kwargs_dict, scheduler, load_weights_from_this_state_dict, validation_period, single_eval_pos_gen, gpu_device, aggregate_k_gradients, verbose)\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mepoch\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0mepoch_start_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 118\u001b[0;31m \u001b[0mtotal_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtotal_positional_losses\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtime_to_get_batch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforward_time\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 119\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'validate'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mepoch\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mvalidation_period\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
355
+ "\u001b[0;32m~/prior-fitting/train.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m()\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbatch\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0maggregate_k_gradients\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0maggregate_k_gradients\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclip_grad_norm_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1.\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
356
+ "\u001b[0;32m~/miniconda3/envs/prior-fitting/lib/python3.9/site-packages/torch/nn/utils/clip_grad.py\u001b[0m in \u001b[0;36mclip_grad_norm_\u001b[0;34m(parameters, max_norm, norm_type, error_if_nonfinite)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0mtotal_norm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrad\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetach\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnorm_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mparameters\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnorm_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mtotal_norm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misnan\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mtotal_norm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misinf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0merror_if_nonfinite\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m raise RuntimeError(\n",
357
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
358
+ ]
359
+ }
360
+ ],
361
+ "source": [
362
+ "transformer_model = get_model(model_sampler, config, should_train = True)\n",
363
+ "model_path = os.path.join(results_directory, f'bayesian_models_transformer_checkpoint_{model_spec_size}_epochs_'+config['epochs']+'.cpkt')\n",
364
+ "torch.save((transformer_model[2].state_dict(), None), model_path)\n"
365
+ ]
366
+ },
367
+ {
368
+ "cell_type": "markdown",
369
+ "metadata": {},
370
+ "source": [
371
+ "### Evaluating Transformer"
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "code",
376
+ "execution_count": 52,
377
+ "metadata": {},
378
+ "outputs": [
379
+ {
380
+ "name": "stdout",
381
+ "output_type": "stream",
382
+ "text": [
383
+ "Using cuda device\n",
384
+ "DataLoader.__dict__ {'num_steps': 100, 'fuse_x_y': False, 'get_batch_kwargs': {'batch_size': 256, 'seq_len': 300, 'num_outputs': 1, 'num_features': 3, 'canonical_args': None, 'model': <function <lambda> at 0x7f6f42f49f70>}, 'num_features': 3, 'num_outputs': 1}\n"
385
+ ]
386
+ },
387
+ {
388
+ "data": {
389
+ "text/plain": [
390
+ "<All keys matched successfully>"
391
+ ]
392
+ },
393
+ "execution_count": 52,
394
+ "metadata": {},
395
+ "output_type": "execute_result"
396
+ }
397
+ ],
398
+ "source": [
399
+ "loaded_epoch = config['epochs']\n",
400
+ "transformer_model = get_model(model_sampler, config, should_train = False)\n",
401
+ "path = os.path.join(results_directory, F'bayesian_models_transformer_checkpoint_{model_spec_size}_epochs_{loaded_epoch}.cpkt')\n",
402
+ "model_state, optimizer_state = torch.load(path)\n",
403
+ "transformer_model[2].load_state_dict(model_state)"
404
+ ]
405
+ },
406
+ {
407
+ "cell_type": "code",
408
+ "execution_count": 57,
409
+ "metadata": {},
410
+ "outputs": [],
411
+ "source": [
412
+ "X, y = generate_toy_data(test_model, bptt, device)"
413
+ ]
414
+ },
415
+ {
416
+ "cell_type": "code",
417
+ "execution_count": 73,
418
+ "metadata": {},
419
+ "outputs": [],
420
+ "source": [
421
+ "results_acc = []\n",
422
+ "results_nll = []\n",
423
+ "transformer_model[2].eval()\n",
424
+ "for training_samples_n in evaluation_points:\n",
425
+ " acc, nll, elapsed = eval_transformer(X, y, model=transformer_model[2], training_samples_n=training_samples_n, device=device)\n",
426
+ " results_acc.append(acc)\n",
427
+ " results_nll.append(nll)\n",
428
+ "mean = np.array([compute_mean_and_conf_interval(nll)[0] for nll in results_nll])\n",
429
+ "conf = np.array([compute_mean_and_conf_interval(nll)[1] for nll in results_nll])\n",
430
+ "\n",
431
+ "global_results['transformer'] = (None, np.array(evaluation_points), mean, conf)\n"
432
+ ]
433
+ },
434
+ {
435
+ "cell_type": "markdown",
436
+ "metadata": {},
437
+ "source": [
438
+ "## Plotting results"
439
+ ]
440
+ },
441
+ {
442
+ "cell_type": "code",
443
+ "execution_count": 71,
444
+ "metadata": {},
445
+ "outputs": [
446
+ {
447
+ "name": "stdout",
448
+ "output_type": "stream",
449
+ "text": [
450
+ ]
451
+ }
452
+ ],
453
+ "source": [
454
+ "files, times, samples, mean, conf = load_results(f'{results_directory}/timing_{model_size}_model/results_svi_training_{task}', task=task)\n",
455
+ "global_results['svi'] = (times/100, samples, mean, conf)\n",
456
+ "files, times, samples, mean, conf = load_results(f'{results_directory}/timing_{model_size}_model/results_mcmc_training_{task}', task=task)\n",
457
+ "global_results['mcmc'] = (times/100, samples,mean, conf)\n"
458
+ ]
459
+ },
460
+ {
461
+ "cell_type": "code",
462
+ "execution_count": 74,
463
+ "metadata": {},
464
+ "outputs": [
465
+ {
466
+ "data": {
467
+ "text/plain": [
468
+ "<matplotlib.legend.Legend at 0x7f6f1c2ba7c0>"
469
+ ]
470
+ },
471
+ "execution_count": 74,
472
+ "metadata": {},
473
+ "output_type": "execute_result"
474
+ },
475
+ {
476
+ "data": {
477
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAEoCAYAAAAub0k8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABkaUlEQVR4nO3dd5xcV33//9e5ZdrubFXfVe9dtiwXDLaMwYWOIfQaCCGE/L4hgQAB0wkQQgKh+QsJhFACGPgGgw0GG1dwkWTLlizJ6mVX0vY69Zbz++POzM5WrVaz2vZ5Phhm5s6dmbvj1d73nPM55yitNUIIIYSYWYyJPgAhhBBCXHwSAIQQQogZSAKAEEIIMQNJABBCCCFmIAkAQgghxAwkAUAIIYSYgayJeuNZs2bpJUuWTNTbCyGEEFParl27WrXWs8f6/AkLAEuWLGHnzp0T9fZCCCHElKaUOnEhz5cuACGEEGIGkgAghBBCzEASAIQQQogZaMJqAIQQQkwdjuPQ0NBAOp2e6EOZcSKRCPX19di2XdLXlQAghBDinBoaGojH4yxZsgSl1EQfzoyhtaatrY2GhgaWLl1a0teWLgAhhBDnlE6nqa2tlZP/RaaUora2dlxaXiQACCGEGBU5+U+M8frcJQAIIYSYdl70ohfR2dk50YcxqUkNgBBCiGnnrrvumuhDmPSkBUAIIcSUkEgkePGLX8zmzZvZsGED3/ve93jNa15TePz+++/npS99KRDMNtva2jpRhzolTFgLgJ6oNxZCCHFBPvmrZ9h3urukr7luQQUff+n6Eff57W9/y4IFC7jzzjsB6Orq4tZbbyWRSFBWVsZPfvITXvva15b0uKazCWsB0FoigBBCiNHbuHEj99xzDx/84Ad56KGHqKys5KabbuJXv/oVruty55138vKXv3yiD3PKmLAWAF8CgBBCTEnn+qY+XlatWsWuXbu46667+PCHP8wNN9zAa1/7Wr7+9a9TU1PDtm3biMfjE3JsU9GEtgC4nj9Rby+EEGKKOX36NLFYjDe96U28//3v54knnmD79u088cQTfPvb35bm//M0gTUAmqznY5lShyiEEOLc9uzZwwc+8AEMw8C2bb75zW9imiYveclL+K//+i++973vTfQhTilqovriN27ZrB/84+NUl4Un5P2FEEKM3v79+1m7du1EH8aMNdTnr5TapbW+bKyvOaFfv5NOdiLfXgghhJixJjQAOL5D1pU6ACGEEOJim/gAIIWAQgghxEU3oQHAlRYAIYQQYkJMaADwtSbjZGVSICGEEOIim/AxeFnflW4AIYQQ4iKb8AAg3QBCCCHExTdhAcD1gmZ/R0sAEEIIIS62CQsAx9vS+Frj+R5Zz8P3pQ5ACCHE8I4fP86aNWt45zvfyYYNG3jjG9/IPffcw9VXX83KlSt5/PHH6e3t5e1vfzsbN25k06ZN/PznPwegvLycD37wg2zdupUXvOAFPP7442zfvp1ly5Zxxx13AOB5Hu9///sLz/3qV786kT/uuJvQxYCONqdYMTcWdAN4YSKGOVGHI4QQYrR+8yE4u6e0rzlvI9z8+XPudvjwYW6//Xa+9a1vsW3bNn70ox/x8MMPc8cdd/BP//RPrF69msrKSvbsCY6vo6MDgEQiwfbt2/nCF77AK1/5Sj760Y/y+9//nn379vHWt76Vl73sZXzrW9/i2LFjPPnkk1iWRXt7e2l/xklmwgKAMhM8dao3FwBcMq5PxJYAIIQQYnhLly5l48aNAKxfv57rr78epRQbN27k+PHjnDp1ih//+MeF/aurqwEIhULcdNNNQLCscDgcxrbtwvMA7rnnHt797ndjWcGpsaam5iL+ZBffxAUAu5MnTnbwqsvmyIyAQggxlYzim/p4CYf71o8xDKNw3zAMXNfFMAyUUoOeZ9t2YftQz4NgldqhnjtdTeAoAM2BtoNkXR9Xu7l6AKkDEEIIMXY33HADX/va1wr3810Ao33ubbfdVggE070LYEKHAXqhE+w/k0Rrjeu70goghBDignz0ox+lo6ODDRs2sHnzZu67775RP/ed73wnixYtYtOmTWzevJkf/ehH43ikE2/ClgOuWF6h6973Il664O9569XzKLPLqY6UUxmzJ+R4hBBCDE+WA55Y02o54IgZJVR2iidPdgPBhEAZz5uowxFCCCFmlAkMAGF8o5uj7afpSbu4voPW4Mi0wEIIIcS4m8AAEAFARU6ypyGBp3087UkdgBBCCHERjCoAKKVuUko9q5Q6rJT60DD7bFdK7VZKPaOUeuBcrxk2bMJmhFDZKXaf7AVkXQAhhBDiYjnnPABKKRP4OvBCoAHYoZS6Q2u9r2ifKuAbwE1a65NKqTmjefPlFSs44pziqVwAcHwXx/Nn3FhMIYQQ4mIbTQvA5cBhrfVRrXUW+DHw8gH7vAH4hdb6JIDWunk0b74qvpys0UhDZw8tPdmgDgBkeWAhhBBinI0mANQBp4ruN+S2FVsFVCul7ldK7VJKvWU0b746vgyNhxlpYPfJXlzfRWuN48mEQEIIIfrr7OzkG9/4xri/z+tf/3o2bdrEv/3bv437e02k0QSAodriB56hLWAr8GLgRuBWpdSqQS+k1LuUUjuVUjvb2ztYGV8GQFllQ6EOQKYFFkIIMZThAoBXwiHkZ8+e5U9/+hNPP/0073vf+0b1nPzMgaVSyp9nJKMJAA3AwqL79cDpIfb5rdY6obVuBR4ENg98Ia31t7TWl2mtL6upqaHCjjM/Op+KqiAABDMCOoU6ACGEECLvQx/6EEeOHGHLli1s27aN6667jje84Q2FxYFe8YpXsHXrVtavX8+3vvWtwvPKy8v5yEc+wubNm7nyyitpamoC4Pbbby/MGHjNNdcAwXTAzc3NbNmyhYceeojdu3dz5ZVXsmnTJl75ylcWphbevn07//iP/8i1117LV77yFbZv38773vc+rrnmGtauXcuOHTu45ZZbWLlyJR/96EcLx/KDH/yAyy+/nC1btvCXf/mXhZN9eXk5H/vYx7jiiit45JFHLsrnOZrFgHYAK5VSS4FG4HUEff7Ffgl8TSllASHgCmDEtpN8jd+qiuU8lnmazqTDibYMK+eEAGR1QCGEmKS+8PgXONB+oKSvuaZmDR+8/IMj7vP5z3+evXv3snv3bu6//35e/OIXs3fvXpYuXQrAd77zHWpqakilUmzbto1XvepV1NbWkkgkuPLKK/nsZz/LP/zDP/Dtb3+bj370o3zqU5/i7rvvpq6ujs7OTgDuuOMOXvKSl7B7924ANm3axFe/+lWuvfZaPvaxj/HJT36SL3/5y0DQIvHAA8Ggt1/96leEQiEefPBBvvKVr/Dyl7+cXbt2UVNTw/Lly3nf+95Hc3MzP/nJT/jjH/+Ibdu85z3v4Yc//CFvectbSCQSbNiwgU996lMl/VxHcs4WAK21C7wXuBvYD/xUa/2MUurdSql35/bZD/wWeBp4HPgPrfXekV63EADiy0n73Si7nd0ne/B00JQihYBCCCFGcvnllxdO/gD//u//XviWf+rUKQ4dOgQESwG/5CUvAWDr1q2F5X+vvvpq3va2t/Htb397yGb3rq4uOjs7ufbaawF461vfyoMPPlh4/LWvfW2//V/2spcBwXLD69evZ/78+YTDYZYtW8apU6e499572bVrF9u2bWPLli3ce++9HD16FADTNHnVq15Vok9mdEa1HLDW+i7grgHbbhtw/4vAF0f7xgqFAlZVrABg1qxGdp9cwisunY3nu2RdGQYohBCT0bm+qV8sZWVlhdv3338/99xzD4888gixWIzt27eTTqeB/ksBm6ZZ6LO/7bbbeOyxx7jzzjvZsmVL4Vv/WN4f6LfE8MBli103KHJ/61vfyuc+97lBrxWJRDDNi9vqPWEzASo0lmmwMFZH1IxSXXOavQ0JXE/j+C6eL8sDCyGE6BOPx+np6Rnysa6uLqqrq4nFYhw4cIBHH330nK935MgRrrjiCj71qU8xa9YsTp061e/xyspKqqureeihhwD4/ve/X2gNGIvrr7+en/3sZzQ3ByPl29vbOXHixJhf70KNqgVgPJhtR7ANcJTBivgyziSPkXJ8Dp5NcumiKBAh6/pEQ1IHIIQQAmpra7n66qvZsGED0WiUuXPnFh676aabuO2229i0aROrV6/myiuvPOfrfeADH+DQoUNorbn++uvZvHnzoBPy9773Pd797neTTCZZtmwZ3/3ud8d8/OvWreMzn/kMN9xwA77vY9s2X//611m8ePGYX/NCTNhywJctMPWdv7ud9thifnL8F/zi1K/oefYTvOHyRbz56gVUh2uI2CaVUVkeWAghJposBzyxptVywABlDY+hVFAHoNEsmt8cFAL6Hr72ZT4AIYQQYpxMXACwo4RPPIJtGKyMLwegdtZpDpxNksx6uL6DrzWujAYQQgghSm7iAkA4jnV2DyGvl3K7jLroAnz7GJ4PexsSOL4DyHBAIYQQYjxMXAAIxVHap6xxJxBMCNSUOUzIpLAuACDdAEIIMUnIDK0TY7w+9wkMAFF0pIroqUcxlGJ1xQp63V5W1CeCAKCDMZPSAiCEEBMvEonQ1tYmIeAi01rT1tZGJBIp+WtP2DBAUKglzyN8/CGsqzWr4sGEQHNmN3L/iTLaerNUhFxsbZN1fULWhNYrCiHEjFZfX09DQwMtLS0TfSgzTiQSob6+vuSvO4EBAFh6DcaBX1HecZAF8RWUWTFU+BiwiqdO9rKwqgrbsMl6EgCEEGIi2bbdb9pdMfVN7Fl1yXPRyqDs1GMYuQmBmtKHiEdMnjrVWygEdKQOQAghhCipiQ0A0Wr0vE2ETz6CaShWx1fSkGxk/UKD3Sd7cbwsgCwPLIQQQpTYhLerq6XXYrccIJztYFXFcjSaBbPP0NLj0NCRwdMeGhkOKIQQQpTSxAeAZcHCCvHTO1gRX45CYUaOAPDkyR7c/HwA0g0ghBBClMyEBwBmr8Uvm0Xs1KOUWVEWxuo4kz7MnAo76AaQ+QCEEEKIkpvAAKByVwp/yfMIndqBqXxWVazgUPdhNtdHePpULxk3qANwfY0vywMLIYQQJTFxAUCpvptLr8XI9lLe+gyrKpaT9FIsmdtOIuNz4GxPoQBQ6gCEEEKI0pjAAND31ubi56INi/KGxwoTAtmRowC5boCgDiAj3QBCCCFESUxsDYBpB9fhcrwFW4ieepQF0XmUW2U0pA6zdFaE3VIIKIQQQpTcBAeAUOGmv+R5WO1HiaVbWVWxgoPdR9iyMMK+00l6MplgH63xpA5ACCGEuGATGwCscOGmWrYdgPjpx1gVX05j6jRr5mZxPc3TjV2F/aQVQAghhLhwE98CkCsGtGpW4sUXEGt4jFUVKwEIR45hGYonT/TI8sBCCCFECU1sAFCq0A2gDANnyXMIN+5iVVk9CsXx5BHWzo/0LwT0vIk8YiGEEGJamPiJgKy+NY79Jdeg3DSz255lcdlCDvYcZnNdmKPNKdp6kwBoHawNIIQQQoixmwQBoK8OwFh0BdoMBXUAFSs41HOULfMMNLDrZGdhP+kGEEIIIS7MxAcAwwTDAsCyy8nWbSV68lFWxZeT9tJEy84SDRk8caIbTwfN/xIAhBBCiAsz8QEACq0AlmHiLHkOVncjG81yAI70HmFzXZTdJ3sL8wHI8sBCCCHEhZlUAQDAX/JcAFa2HqLCjvNs92G21Nmc7cpysr0XAA04ngQAIYQQYqwmRwAoGg5oVi7GrV5CvPHxXB3AYS6ZH3QR7DreWXiKrAsghBBCjN3kCABFwwFtwyKz6CrCZ3azOraYM6kmKsuS1JaZ7DrZ1bcwkNQBCCGEEGM2OQIAFLoBbMMmu/gqlO9yiRMU/R3qOcKW+mBdgKzUAQghhBAXbBIFgGA+AKUU/oIt+HaMS9uOYSqTgz1HuGSBTXfK49mzfdMCy+qAQgghxNhMngBQNBzQtmJkF15OTeMOlpQt5FD3YbYsCFYO3HG8vfAUqQMQQgghxmbyBAAAq68OILvoKsxEC2tDszncc5SqGCysttl1XBYGEkIIIS7UJAsAQTeAbdhkF10JwCWZDBk/y4nEKS6pC7G3sZdUNguA58vywEIIIcRYTK4AkBsOaBkmlM/GmbWaba3HADjYfZhLFthkXM3uho7CU2RdACGEEOL8Ta4AUDQc0FIW2cVXsrhpP9V2BQe7j7BxQQhD9a8DkEJAIYQQ4vxNrgAARcMBLTKLnoOhfdZZVRzsOUxZyGD1nBC7TnQWdpc6ACGEEOL8Tb4AYObXBbBw56zFj1RySTpFc7qFzmwXW+pCHDybpDsV1AH4WuNKN4AQQghxXiZhALDAsLANCwyT7MIruKylqA6gLoSvYceJ1sJTZDigEEIIcX4mXwAAsEIYysA0DDKLrmJDbzsWBgd7jrBmjk3YUjx+rGg+AOkGEEIIIc7L5AwA+W4AZZFddAUhDFaaZRzsPoxtKjbOD7HrRNF8ANICIIQQQpyXyRkArDAohW1Y6Eglztz1XJJKcqT3GK7vckldiFPtaZq60wBoLa0AQgghxPmYnAEgNxzQNoLpf7OLruLSjrM4vsPxxEm21AVDBR871lcHIPMBCCGEEKM3OQMA5AKAhVKQXXwVmzNB1f/B7sMsqbGojBhSByCEEEKM0eQNALlpgS1l4dauZHa4irna5GD3YQyl2FIXYteJjsKSwLI8sBBCCDF6kzcAmMEwQNuwQCmyi65icyrJwZ7DAFxSF6I94XKsNQGARooBhRBCiNEaVQBQSt2klHpWKXVYKfWhIR7frpTqUkrtzl0+VpKjs8KFOoDM4uewJZWkNdNOe6aDLXXBSIHHjrUVdpduACGEEGJ0zhkAlFIm8HXgZmAd8Hql1Lohdn1Ia70ld/lUSY7ODActAIBTfxmbsi4Q1AHMjZssqDB5XAKAEEIIcd5G0wJwOXBYa31Ua50Ffgy8fHwPK8cKYxgmhjLQoTJW1K4lpCl0A2ypC7H7VFdhKmDX1/iyPLAQQghxTqMJAHXAqaL7DbltA12llHpKKfUbpdT6khxdYThg0ArgL76a9Zk0hzr3A3BJXZhk1mffme7CU6QOQAghhDi30QQANcS2gV+znwAWa603A18F/nfIF1LqXUqpnUqpnS0tLaM7wqIAkF10FZvTWY4mGnB8h80LQijoPxxQAoAQQghxTqMJAA3AwqL79cDp4h201t1a697c7bsAWyk1a+ALaa2/pbW+TGt92ezZs0d3hFakEAC8qkVsMspw8DnWe4J4xGDFLIvHiyYEkjoAIYQQ4txGEwB2ACuVUkuVUiHgdcAdxTsopeYppVTu9uW5120b9EpjYVpYZhilAKVYM3crAAe7ngVgS12Yvad7SOYKBD1f40kdgBBCCDGicwYArbULvBe4G9gP/FRr/YxS6t1KqXfndns1sFcp9RTw78DrdAln5VFWGEsFrQDxJddQ57gcaXkCCOYD8Hx48mRnYX9pBRBCCCFGZo1mp1yz/l0Dtt1WdPtrwNdKe2hFrAiWYeH4Ltm6S9m002FH4iRaa9bNC2GbsPN4O1evCHodsq5PNGSO2+EIIYQQU93knQmwmBXGNu3C7Q3R+bTi0JZuI2wp1s8L9asDyHieTAsshBBCjGBqBAClsK1o4e7aeZcBcLT5cSDoBjjckqKtNwMEywP3ZNyLf5xCCCHEFDE1AgBg2jEMFRzuwmU3EvF9juQCQH5a4J3H+4YDprIeGde7+AcqhBBCTAFTJgAE6wIE/fpGVT3rfYMDyQYAltdaxMOKHcf6DzzoTrnSFSCEEEIMYeoEANPGzi0RDLA+Vsch5ZDNdGEaik0LQjx+vL3fCd/Xmu60dAUIIYQQA02dAADYVqxwe838bbhKcebE74FgWuCmHodTHal+z0k7HmlHugKEEEKIYlMqAFihssLt1UteAMCRlp1AsDAQwI6jrYOe1512ZJEgIYQQosiUCgDKimDl6gCqorUsxOLZZANozYIKkznl5qA6AAhGBXSnnYt9uEIIIcSkNaUCAIaBbfd1A6wvW8jTliLUfgSlFFvqQuw62TXkVMAZ15euACGEECJnagUAwLb7ugHWzNtGm2XSc+p+IJgPoDvjcfBs15DP7U47sk6AEEIIwRQMAMV1AOvmXgrA0ZZdAGxeENQBPH506KWGtYbulHQFCCGEEFMvANhRjFwdwJL4QmKY7M+2YGS6qY6ZLKu12XG8Y9jnZz2/sHKgEEIIMVNNuQAAfd0ApjJYU76Qp8Ihyk/3jQZ4qrGXdHb4b/q9aRfXkxUDhRBCzFxTMgBYob5CwHVzNnMwZGM0PALAlgUhsp5mz9HGoM1/CBpkgiAhhBAz2pQMALZdXri9rno1nlKcaH0SfI8N820sAx4/0YnKdA/7Go7nk5AFg4QQQsxQUzMAWGHILQ+8tnIlAHsNl0jbQaK2wWULo/z86Q4a27rASQz7OomMiyNdAUIIIWagKRkAlFKYdrAuQEWonIXRuTwZCVPe+BgAf/3cCpSCj93dgJ/qBjcz5OtoglEBsmCQEEKImWZKBgDo3w2wvmYNT0djlDUGdQCzyhT/cN1c9pxN8R+Pt2BkusAfurnf9TW90hUghBBihpm6ASAUA6UAWFe1kk6laek6hplqB+CKJYqXrq3iuztaeKKhB5XuAD10c38y65F1pStACCHEzDF1A4BhgxVM/LOuahUAT0XClDc+DoCvff7q6grqK0PcencDPcksKt057Ot1p6UrQAghxMwxZQOAZVgYVlAHsLi8jjIryhNlFZQ3PlrYRxlZPv7CebQlXf7pD6fBzaAyPUO+nudreqQrQAghxAwxZQMAgJWbEMhQBmsrV/JUWZyy07v69fcvrPX4qyvncO/hbu7Y14lyEuAkh3y9VNYj48qCQUIIIaa/KR0AguGAFhDUARzVGVJukljzM4V9PN/jls0xti0s418eOMPxjgxGpge87JCv2Z1y8WXBICGEENPclA4AlmEV1QGsxEezJxrt1w0AkPHS3Hr9PMKWwUd/20DW9TDSneAP/rbva02PzBIohBBimpvSAcA2bDDCAKytWoFCsat2EWW5+QCKRSMZbr1+Ac+2pPnmo82g/dzIgMHf9tOuR9qRrgAhhBDT15QOAIYyggmBlKLcLmNxeR1PxcqJdB7H6j3bb1/Xd9m22OLVG6v5wRNtPHqiF+W7w44M6E470hUghBBi2prSAQDANu1+3QDPeD34UJgVsFjKS/Peq2eztCbMx3/fSHvSRXkZVLZ30L5aByFACCGEmI6mfACwlAVGEADWV62ix0txqGoB1QfvRA0o9NNa45LkszfV05vx+PQ9jWitgwDgpAa9dsb1SWWlK0AIIcT0M+UDQNACENQBrKsKFgZ6bPXziXQcZs7Obw7a3/Fd6qs0/99z5/Lw8V5ufzqYOdDIdIM3+Bt/T9rBk64AIYQQ08zUDwCGjTJMMC3qy+YTt8vYYxu0rXsNNc/+koqj9w56TtJL8aoNlTx3STlfebiJw61pQGMMMV1wfsEgIYQQYjqZ8gEAcsMBTbswIdD+rkN0XfEuknM2Mv/RLxHqPN5vf601CS/Bx15QRzxs8pHfNpB2/WFHBmQ9n2RWhgYKIYSYPqZFALANG8xgWuD11Ss50duINj3OXvdxfCtK/QOfRA3o43d8l0jY5RMvrONoe4Z/f7gJAOU5qEz3oPfoTbu4niwYJIQQYnqYHgHAtMGyQanCwkAHOo8QrZ7H6Ws+Qqj7FPMf+dKgb/ZJN8m2RVHeeEkttz/dzgNHgxO/clOobKLfvhrokq4AIYQQ08T0CACGHdywQqypXI6BYl/nIUylUEsup2Xz26g8/geqDt7R73laa3qdBO+5ag6rZ0f49D2naekNTvIq2wNuut/+rq/plQWDhBBCTAPTIgAYysBQBhghYlaUFRVLuPfMH8l4WcKmSeLSN9Fbdzlzd3yDSOuBfs91fAdfZfnMTfVkXJ+P/74RP9dSYKS7+i0sBJDIuDjSFSCEEGKKmxYBAHKtALkJgd656vU0Js/yX4dvB6AsHKbpmo/gRaupe+CTwZC/Ikk3xaIqm7+/Zj47TiX44RNtuUd0riiw/wm/M+mQdSUECCGEmLqmVwDIDQfcOmsjL66/np8du5N9nYcAiFXW0njtx7FTbSx4+PP9Tuq+9ul1E7x8fRXPX17B1x9pYl9TUDSofG/QdMG+1nQks/RmXPQQawkIIYQQk930CgAAZnD9l2vewKxIDV/ccxtZL4upFNbCjTRd9h7ijY9Su/fH/Z6f9bJk/Sz/eP18amMWt97dQDI3C6DyskOODEhkXNoTWRkdIIQQYsqZNgHAMiwUCsxgVsAyK8bfrf8LTiZO89+Hfw5AyDBJb7yFriXXMXv3d4idfbLfayTcJPGwwadvrOdUZ5YvPdi3oJBykuD0HxkAQWFgeyJLQooDhRBCTCHTJgAopQoTAqGCbdtmb+bm+uv4ybFfcaDrCACxkE3rcz9AtqKeugc/g5VsLbyGr30SbpJL68p4+7ZZ3LGvk98f7Co8bmR6wc0Mem8N9OZaA2TaYCGEEFPBtAkAkJsRUCkwQ4Vt7179Jmoj1UFXgB8M8Ssrr+D0tZ/AcFPUPfhp8PsW/Ml4GbJelr+4fA4b50X5pz+c5kx3flEhjZHp6rd/McfzaevNyAJCQgghJr1pFQD66gDChW3ldoz3rf8Ljvc28IPDvwDAUIrQ/JWcufLviDXvYfaT/9nvdXrdBIah+dSN9WgNt97diJv/Zq99jFRbUBPgJIMFhIoKATXBMsKdySy+tAYIIYSYpKZnALBC/bZfMXsLN9Zdy/8cu4ODXUdz+xq4a26kY9VLmfXMjyk/+cfC/r72SbpJ6itDfPC6+Tx1Jsl3d7T0vaD2UU4SI9ONkWrDSDSjkq2odFdQJ+BlyTgerYkMaUdaA4QQQkw+0yoAmIaZmxDIhHCs32N/teZNVIcq+Oc9t+HkJveJ2hbtV7yXVO0qFvzx89g9pwv7p70MWd/h5jVV3Ly6kv94vIWnTieHeWeN8l2Um8LI9GCk2jESTZBoobujha7ODvxsGnwZLSCEEGJymFYBAIpaAULlhSGBAHG7nL9d/06O9Z7ih0f+X2F7WVkZZ679BChF/QOfQHnZwmO9Ti9aa/5h+3zmxW1uvbuB3szov9Er30O5abLJLjramsh0nYbeZki2Q6YnKCiUUCCEEGICTN8AABCpCIoCc54zZysvXPA8fnT0lxzuPg4E9QDh2Qs5c/WHiLQfZu7jXyvsnx8VUB42+cyN9TT3OnzuvtNjmvzH15rulEtPKo1205DpDYJAb1P/UOBIS4EQQojxN70DgGFCON7v8feseQuVoTj/vOc23FxXgG0YeMufR+uG11N96NdUHvldYf+0l8bxHTbOj/GXV87hdwe7ufNAF2OVdnw6kg7Z4smDfC9oDcj0QqoDEs2Q7h60eqEQQghRKqMKAEqpm5RSzyqlDiulPjTCftuUUp5S6tWlO8TzYxlW/w12BOy+UQEVoXL+dt07ONJzgh8d/WVhe9S26Nr6DhJzNzPv0X8j3HG08Fivm0BrzVu2zuLSuhj/fP8ZDrb0XynwfHi+pivlkMi6aIY4yWsN2QQkWsBJjfl9hBBCiOGcMwAopUzg68DNwDrg9UqpdcPs9wXg7lIf5PkoTAhULFwBRt+PevXcy7h+/tX84Mj/40jPicL2smiEM9d+DD9URt0Dn8BwgqI/z/dIeilMQ/HJG+qJWoq3/eQo393RguuN/Vt6MuvRkXRwh2vy9z1IdUKiLRhuKIQQQpTIaFoALgcOa62Paq2zwI+Blw+x398APweaS3h8Y9KvGwCCOoBwZb9Nf732rcTtMr645/8WugIMpYhVz6HxebcS6jnN/D/9S6EZPuWmcH2XeXGbH71xBdcui/ONR5p520+PXnBrQGfSIZkdYSphLwuJ1iAMSH2AEEKIEhhNAKgDThXdb8htK1BK1QGvBG4r3aGN3aAAAGDZ/YYGVobi/O26d3Co+xg/Ofarvt0MA7X4UloueQcVJ+6n+kDfiIF8V0BtzOJzL1rIF160kJZeh7f85Aj/99FmnDEuCqSBRNajI+XgjdTv76SCboHs4DUJhBBCiPMxmgCghtg28Cz1ZeCDWusRx8gppd6llNqplNrZ0tIy0q4XZFAXQN6AoYHPm3c52+ddxX8f/jnHevoyTsSy6Nn0enrqr2LurtuItOwDwPVdUl5fn/zzV1Twkzet4IaVwTwBb/7xUZ5pGnufvev5dCSypJxhagMgWMY43Q29LUOuSyCEEEKMxmgCQAOwsOh+PXB6wD6XAT9WSh0HXg18Qyn1ioEvpLX+ltb6Mq31ZbNnzx7bEY+CZViEi6YD7mfA0MC/Wfc2yu0yvrjnNryiOf7LoyGanvdhnNgs6h/4FGY6qPxPeel++1VFLT51Yz3/+tJFdKc9/vynR/nqH5vIuGNvDejNeLQlsvRkRqoPcIOhg8n2YdcmEEIIIYYzmgCwA1iplFqqlAoBrwPuKN5Ba71Ua71Ea70E+BnwHq31/5b6YM9HPBQPZgUcaMDQwKpQBf/furfzbPdRfnr814XtCkWsoprGaz+Bme5gwcP/BNpHa02P24uv+5+Yn7c0zk/etIKXrq3iv3e18sb/OcJTZ4abOfDctO4bMtiZcki7w5zk3UzQLZDpkWGDQgghRu2cAUBr7QLvJaju3w/8VGv9jFLq3Uqpd4/3AY6VoQziofjQDw4YGnjtvCu5Zu4VfO/Qzzje21DYbhkG5oJ1NF3+XspP72DWnh8CQVdAl9ONN6DHIx42+egL6vjqyxeTcTV/cfsx/vXBM6ScCyvcczyfnrRLWyJLMuviDzzRax3MISDDBoUQQoySGsusdqVw2WWX6Z07d477+3Rlush4Q/SVaw3JtkJVfUemiz9/+P0siM3l36/4JKZhFnbtSWWZ9eBnqTh6Lydf8M8kF2wFgpBRYceHrDlIZD2+9scmfrang7oKm1tfUMfW+rKS/EwKCFkG0ZCJbQyR4cxQ0NVhDlEMKYQQYlpQSu3SWl821udPu5kABxq2K2DA0MDqcCV/s+7tHOg6ws9O3NVv1/KoTfNVf0emajF1D30GKxEUMPrap8vpJusPHqNfFjL54HULuO2WJSilePcvjvP5+06TyF54f70GMq5PZ9KhI9c90K9oMD9sMN0lwwaFEEIMadoHgBG7AgYMDbxu3lVcPecyvnvodk72Nha2KxRl5XFOX/sJDC9D3YOfCorwIKgJcHqGbmUAttaX8T9vWM4bttTyiz0dvO6HR3j0RG/Jfj63qHsgkXX7DyPMJmXYoBBCiCFN+wAAEDbDRKzI0A8WDQ1USvG3699BxAzxxb3/F6+o0M8yDKw5yzhz1fuJtTzD8v99KzV7f4yZ7sqFgF5S7tD97xHb4H3XzOM//mwpEUvxN788wafvaaTnPFYWPBetg5kF2xNZulNFaw3khw0mWmXYoBBCiIIZEQAA4vYwXQHQb2hgTbiK9659G/s6D/GL47/pv5tlkl75Ak5t/xRO2WzmPvEtVvzsNcx/+HNEW54h4STodYb/tr1pfowfvH45b906izv3d/LaHxzmoWM9JfsZ8zKeT1fKoT1ZNKeA5wRDBlMd0i0ghBBi+hcBFst6WToznUM/6KSDb8oEzfq3PvEv7Grbw7ev/gL1ZfMLu2mChXw8XxPuOEbVwTuoPPp7TCdJunoFHatfRnrFzZRFZ6PUUHMoBfY1pfj0PY0cbstw0+pK/v6aeVRFh5nA6AIpBWHLIGqbWIYBhgWx2n7rIwghhJhaLrQIcEYFAIDubDdpd5i5+9PdQRAAWtPtvOPhf2BJeT3/esXHMItaDzytSWTcwtS/hpOk4ti9VD/7SyIdR/HsMnqW34i74Q3ompXDHovj+Xx3Ryvf2dlCZTgoGnz+iorS/bBDsE2DiG0QDoVRZbP6TYokhBBi6pAAcJ601rSl2wZN5JN7sN/Mer9rfJAv7Pkm71nzFl615OZBu2c8j0TG7Zt/R2uiLc9QffAO4scfwPAdsvO3kl73GjJLrh92WN7BljSfvqeRAy1prl9RwQe2z6c2Nj6tAXlKQTgcIVIxG9syz/0EIYQQk4oEgDEYsSvAdYJ+coKw8JEn/pndbfv49tVfoK5s3qDdfa1JZF2yA6b+NdOdVB7+LdUHf0Wo9wx+tJbUmltIr30Vfvn8Qa/j+prv72rl24+1ELUNbtlYzS0bqplfEbrgn3ck2gxhxGqIhiwitolpSIuAEEJMBRIAxqgn2zNs1T7ZXsgE0/i2pNt5x8MfYHl8EV+6/NZhCwkd3yeRcfH8gbP0+cRP72LWoV8TPvkwKEV20TWk1r0Gp/4qGPB6x9ozfP1PTYXiwKuXxPmzTTVcsagMY5ya67UZRkerAQiZwQRDYcsYsYZBCCHExJIAMEYjdgUAJDuCynngtw3388W9/5e/Wft2XrH4huFfE03K8UhnvUFr+SmlqEr1ED94B9Fnf4GRaserWEhq7atJr345OlLdb/+zPVl+saeD/32mg46UR31liFdtrOal66qojJS+e0BbEXSkqu94gbBtBvUC0kUghBCTjgSAC+B4Dh2ZjqEf9L2gHkBrtNZ8eNfn2dPxLN+++gssiM0d8XVd3yeZ9QpFgsXK7DKimISP3UNk308JnX0CbYbILLuB1LrX4s7Z2K8wL+v63Hekh5/taWf36SRhU3HD6kpevbGGdXOjF/TzD6TtGDo8uAjRUIqInRtFYMrIASGEmAwkAFygEbsCioYGNqfaeMfDH2BV5VK+uO0jw88pUCTteiSz7qBF+qJWlDIrmIHQbD9EdN/thA/9GsNJ4NSuJr3utaRXvWxQ0eDBljQ/39POb57tIuX4rJ8b5dWbanjBygoiVmlOzNouQ4eHmTmRvlEEEcvEkHoBIYSYMBIALpDWmvZ0+6CV/QqKhgbeeeoP/Osz3+Zv1/05L130wlG9vp8bMpgd0BoQMcOU2+WF+yqbIHz4LqL7forVfhC3chGJK/+e7KJrBw3V68143Hmgk5893c7xjiyVEZOXravilo011FdeeNGgDpWjQ+Uj7pNfkChiS72AEEJMBAkAJTBiV0DR0ECtNR/c+Tn2dR7iW1d//pxdAcWyvkcy4/UrEgyZIeJWef+Tp9aETj1E2SNfwuo6TrbuSnqvej/eEPMJaK3Z2ZDgZ0938MDRbnwNVy0u58821XDV4vILquj3w3GwR7d6oVIQsU2itoktXQRCCHFRSAAokd5sL0k3OfSDRUMDm1It/MUfP0TIsPnkJX/H+upVo36PoYoELcOiYqhpin2H6L6fEtt1GyrbS3rtq0ls/St0tGbI127udfh/ezv4f3s7aEu6LKiwuWVDNS9fXz3mGQb9cAXYsXPvWMQ0FGHLIGQZhExpGRBCiPEiAaBEztkVUDQ08HhvA7c+8S+0pNr4uw1/wQ1115zXe7m+TyLr4ea6BUzDpMKOY6rB1fYq3UnZrm8S2Xc72o6RvPRdpNa/fthJhVxPc//Rbm5/up0nGpOETMULVlbw6o01bJgXPe8Tsh+uBHtsxYaKoGYglAsE0joghBClIwGghEbsCoB+QwO7sj18aveX2d2+j9csfQnvXPX6ftMFj0ZxkaChDCrsOJYx9Ld1s+MI5Y/8C6GGP41YH1DsSFuan+/p4K79nSQcnzWzI7x6Uw03rqokYo/2WBV+pBKGW03xPCgFYdMsBAKZdEgIIcZOAkCJjdgVUDQ0EMD1Xb6+/3vcceoerph9CR/Z/N5Cdf9oFRcJKqWI23FCxtDf7gFCJx+m7NF/weo8NmJ9QLFE1uM3B7q4/el2jrZniNkGz11azvOXV/CcJXGi5wwDCj9SBVb4vH62czENVegqkEJCIYQ4PxIASuycXQFFQwPzfnnyd3xt//dYWDafz1z6gfMqDszL+h6JdFAbEDOjhM3w8EMNfYfIvtsp2/XNoD5gzatIXPaeYesDin+2J08nuetAJw8c6aEz7RG2FFctDsLA85bGKQ8PN+mPwo9Wgzk+UxMrwDL7agdCJRrWKIQQ05UEgHHg+A4d6RG6AoqGBuY92baXT+7+MqD4xJb3saV23Xm/r0aTzLqknaA1wDZsIkYY27CH/Has0p3Edt1GdN9Pc/UBf0Fq/RuGrQ8o5vqa3Y1J/nCkm/uOdNOacLENxRWLyrhuRQXXLI0PLh5UBn6kelSvf6GUohAEQqYhExAJIcQAEgDGyYhdAQDZRHAp+vgaE2f56BNfpDHZxN+sfRsvXfSCMb236/tkXI+M6xfqA0JGiLAZwh6ie8DsOErZo18ifOph3IpcfcDikesDivlas+dsij8c7ua+w92c6XEwFWytL+P5KyrYvryib3VCZeBHa2CYWoXxYqiguyDoKujbrui703970e0Bn0P/x4bfTwghJjMJAONEa01HpgPXd4ffyfcg0wNutrCp10ny2ae+yuOtu3nFoht4z5q3YBpjm0tfo8m4PhnX7zdiIGyECBvhQa/bvz7gCnqv+sA56wMGvafW7G9OB2HgSDcnO7MoYMuCGNetqOC65RXMqwjjR2thjD/XZFbcFWGbSoYyCiEmLQkA4+icXQGFHdNBEMh9lp72+fazP+L243dyae0Gbt38f6g4x8x65+L6PinHw3H9QqODbViEzDBhI9RXL+A7RPb9LFcf0EN6zS25+oDa835PrTVH2jL84XA3fzjSzZG2DADr50Z5/spKrtuwhLqa0U0WNJVZhsLOdUXYpoxeEEJMDhIAxlnCSZBwEufe0feDuQKKagN+23A///bMfzA3OpvPXPp+FpXXXfDx+FqT9TzSjl+YVTBfLxA2QoSMEEopVLqL2BO3EX3mJ2grSnLru0ZdHzCcEx2ZQsvA/ubg51w1t5zrVs/hujVzWDpr+ocByHVHFLUSSH2CEGIiSAAYZ6PqCijmOpDpDroHgL0dz/LxJ/8Vx3f56Oa/4fLZW0p2bI7vk86tOpj/rxjUC9iEzDAhw87VB/wr4VMP5eoD/o7s4u2jrg8YzunuLPcd7uYPR3p4+kxQK7GkNsZ1a+ZwzcrZrJ4XnzHflPMFi3bhoqTbQAgx7iQAXASO79CZ7kQzys9Ka3ASkE2CDqYPvvWJL3Gs5yTvXvMmbll8c0lPEL7WZNygVcAv+u9pKIOwGSZihIk0Pkr5I/+C1XmUbP1z6L7us+ccNjhazSm474TDfc+28OTJDnwNFRGLrYuruXxpDZcvraG++vzmR5jKpI5ACHExSAC4SEbdFVDMc4PaAM8h5ab5/J5v8HDTDm6q287/Wf/nI074M1YZzyPr+INWH7QMizAGVc/+kvjjX8GPzqLrxi/j1a4uyftqM4SOVNORdHj8eDuPHwsuzT1B3cCCqgiXLwnCwGWLa6iMjf9QwskkX0dgG8EoBqWCEQyGCrpw8teTmu+DId0dQkwWEgAuovZ0++i7AoplU5Dtxfc9vnf45/zgyC/YUL2aT2x5H9XhytIfKOBpTdpxC0MJi1W0H2XeHz6Mke2he/tnyC4b3dLG56KtCDpS1Xdfa062J4MwcLydXSc6SGQ8FLB6XjxoHVhSw6aFlYSt6Tei4Hyp3P8ZKhjcaCiVCwvB9eDtQ+870Gj+jQ+7i9bgpsFJgZfBsMIQjoM1PhNCCSFGTwLAReT6Lh3pjtF3BRTzfcj2gJPhD2f+xBf33EZ1qJJPb30/y+OLS3+wORpN1vNJO31DCQGsVDsL7/8EkZa9JC59F8mtfwXnuZbBkO9nRdGh8iGHCLq+z/7TPTx2rI0dxzvY09iF52vClsHmhVWFQLBybjnGZP82PN15DspNodw06L7fG6XAMgzMUBg7WoFlh6UIUogJIgHgIks6SXqd3rG/gJuFTDfPdhzi1ie+RMJN8uFNf81z524r3UEO99a+T9r1yOZaBZSXZd5j/07V4bvILN5Oz3WfDU7epaIMtGGCCi7aMHK3g+uEo3nyVCePH2tnx7F2jrYGXSxVUZvLllRzxdJati2tZn7l2FYjFOdJ++CmUE4KNcqWLm2GIVyOZYexTYVtGliGjIwQF4HWweJsXjb4wmFFLri4eaqRADABOtIdOL4z9hfQGrK9tHY38rEn/5Vnu47w5ytfyxuWvfyi9QM7vo/j+TiuT/yZnzN35zdwKxfTfdNX8SsWXpRjgKAdOx8SWhIej5/q4fET3ew40UVrbzDB0sKaaKF+YOviauKRmVU/MO7cTO7bfgbG0rpFEAR0OF6YITJfCGmZCtuQ4ZKiBHw/ONl72eDE7zv9+66UCkKAHS35wmWTlQSACeD5Hl3ZrrHVA/R7IZdMsoUvPfVN7j3zR54//zm8f8NfEh6nBXeG42uNcWoHtfd8HLSm4/mfQy963kU9hoG01hxtz/D4qQSPnUrwREOClBM0Rdum6uvzZnAfuSpcD+hHZ3D/ORQ/D8KWyep5cTbVV7KpvpJFNbHJX5w3Fr4XnPSdZL8m/gulrUiuC2jwVNEDQ4GVazG44PfUGq2D6OIXbuvCuUFr+o2Ogb4visNNJT3UtqH2LX6Kacjwz5LKf7svnPCHWaBtKMoAOwJWdFrXq0gAmCBaa3qcHtJu+tw7n+u1Mgn+58AP+c+DP2F15XI+dcnfMStSmiF658PobqTqNx/C7DhOzxXvJbvp7YAxxu+EpeV4PnvPpniiMUnS8YM/+oCvAQ0+oFH4AFrho3KPK7RSuZNC/vHciYK+k0f+BNGbcdl3upvudBDuqqI2G3NhYFN9FWvnx0cuWNR+7luJ7rutc0eXew9tmMEJUpkXt8kyV9Cn3BTKy557/wt5qxFqQYoVhwLLUIUTef6/r/b7TubF2/3chsnwu1nMUMHPYeZ+HtNQQc3EDJkTY8y07n+y97IjVKaeJ8PqCwPmxV3DZLxJAJhgKTdFb7Z3bIWBxXyPP564l3968svErCivXvIiblhwzbiNEhiOcpLE7/00kWMPklp9M9nrPoJlV+D7iqyrB32TmnKUgVaqXy1CsM0ITlbKwPc9TrQlebqhi6cau9nT2MPJjiDoWYZizdwYm+bH2LygjI3zo8yOWX0n/bEcj2GBYeW6QqzgOEq52NIwBX3jT6HtKNoum5brRpwPBX1hoF84mKGtBr434IR/AV2q58O0+7oJpsHvpASAScD1XboyXXj6PJqohnGk9QD/vvur7O04gKVMrp57GS+uv55Latf3zfc/3rRPbOd/Ub7zP3HmrKP75n8iUrGImBXF0xrH88m4GrdoBsLpriPp8vTZJE+fSfL0mRT7mlJkveCnr6uwc4Egxub5MZbWhEvwjU/liiaDQNAXDqzR/eEaQ0Hf+FFoO4YOlZVkpMl0U9xqYCqVaw2Z+q0GWmscT+P6Pp6TGfDt3h+w71AvMKpNQBCwDKOvG8Y0gm5Cc6RwZYWDMGBFpuz8FhIAJgmtNd3ZbjJephQvxvG2/dx17Df8rvFBepxe5kfn8KL667ipfjs14aoLf49RCB19gIp7P40Oxei66XP48zYQs6LErKAqPz/E0HF9sp4urE0wE2RdnwMtaZ4+k+SpM0mePp2kPRUEwLKQwcZ5MTbNj7J5QYz1c6OUhUr5baM4HFh9Iy0MC3z3ggv6xo9Ch8rQdkyCwCgEJ7XBXQmWoTAmWTgoPtk7XvDlwPV18PuY6R73Lqfh5GuCDENh0j8kGLmgYBoGmKFc8eDUGkkgAWCSSTpJEk7iwrsEAHyPbKqDhxoe4s6GP/BU+z5MZfKcOVt5Uf11bJ21CXOc/5CabUeo+s2HMBIt9Fz7D6TXvAjTMCi3ygYVK3pak3VzgcAfPAHRdKa1prHL6QsEZ5IcacugAUPBylkRNs2PsXp2hKqISWXUpDJiURkxqYiYWJPsD/q4UkbQImCXTak/tpNJYT4Go393wsUYaeH7Gsf3cT2N6wW3B4V/rVFOApVNMPmC6GBGLiQYClQohmlHMUORQkjI/5YWij8nye+tBIBJyPEdujJd+KXqb/VcyPZyqvM4dzXcx92ND9Dl9DA3Moubc60Cs8exaFClu6j83a2EGneR3PQaeq/6azAsbMOi3I5hDzOlseP3tQ7MpO6CvJ6Mx96zKZ46k+Sp00meaUoVRjIMVB4yqIyYVEaDUDDwUjXE9qg9xdcYUAbazrcITOGfYxIpdavBqE72A3lZVKYLdT5V+5ORMoJRLVYkaCEYbrcBN/JxYeBIkfy/1YFhIhoyxzwTqgSAScrXPj3ZntJ0CeQ5Gcj2knXT/KlpJ3c2/IEn2vZioLhyzqW8uP75bJu9ZXxaBXyX8j99jdie28nWX0bXCz+NjlQAEDZDlFkxrBH6pmdyd0Ge62uaex260h5dKS+4Tru5a4/Owva+bYns8CHSNlSuJaHvErIG/Lcfsh918MaBfwaG+q+jgEXVYdbNibJuboRZZSWaj0EZ+KEysCQIjKfhWg3yTeK+H/wbdf0gsDveeRb9ah+V6UG5qfH7ISaINkywomir9MWDFRGb6Bi7CCUATHIl7RLIyyYhmwCtOZ1s4q5Tf+C3jQ/Qke1idqSGm+uCVoG50Vmle8+cyIE7iT/wRfzy2XTe/AW8mmVA8MclYkYos6KjKlb0dfDHJuuO4Q/NDOJ6mq6MR1eqLxT0XdyiIBEECNcb/DmO9pw6cL+BT3P9YBnofHabXWaxbm6UtXOirJ0TYd3cKFXRCxm9UDQxFEZulIZRNHLDGHwRJaHUBY66c1IY2Z6LPMpkYmjTDoKAFS1JYJUAMM05nkNXtoRdAlCYTRAnBToYifBI8xPc2XAvO1v3oIBtszfz4vrruXL2JZglTK3W2b1U3v2PKCdJ9/UfJ7u0b9KgoPI2eK+BTWH5U0r/CVWC236ufiDfzIgunoGlr+lMEby+qcyp3fw9RaUdn2db0uxrTrG/KcW+5hQnOvoKvBZU2KydE80Fgwhr50QpD4/jcKvicEDfUE6tFANDxLn/WF/g79NM/H30vaC5f4KK/CaWQlvhoIvAioz5VSQAzAC+9unOdJP1S/wPxfdyQaCvq+FssoXfNN7Hbxruoy3TSW24mpvqruVF9c9nXmx2Sd7W6G2h8u4PYzfvp3fbO0lufWtJv5G5+amKh6kfULmgYSkLy8hfT69JPqaK3ozHgeY0+5uDQLCvKcXp7r5x3YuqQqydG2VdrpVg9ewoUXt8v71nXJ+ejEdvxqc749GT8ci4OrfsMpi5GSEHXhsq6EM3oFAUZuRmjex/PXhbZcTCDlkDhm5O0KRPF4HKJlDZXqZCkd+4U0Yw+ZUVCeYaOA8SAGaQhJMg4SRK/8KeC5mefhNqeL7HY61P8utTf2BHy240cNmsjbx04Qu5as6lFz6vgJsh/sA/Ez34W9LLttPz/I8EBV0lptGFgkLXH35528GhwB6xLmHI9xpi2lhx/jpTLgeai1oKmlI0J4L5CAwFS2vCha6D9XOjrJgVIVxUv+D5mt6sR08mOJEXTuZpj56sR0862NaT9ftuZ4L9ezMemSG6QsaboaC+MsTSmjBLqsMsrQnnboeIhXItE0WTPWll9k36NJW6M7xsMLRvwueXmJy0YeXqBSKjqheQADDDZL0s3dnu0nYJ5OUKBQfOm92cauO3jfdxV8N9tKTbWVq+kLeseBXPnbvtwoKA1kSf/gnlj3wdt2ZZMF9AxYIL/CFKRykKrQO2YRXCwUjy9QnBWGZm5AiG8dCacNjfnGZfUypoLWhK0ZGbO8E0gpNnxtX0ZEYufoTgZBsPm7mLQXnYpCJsUh42iBduB4/l9wtbqjBttO9rfE3uogdcD96mdRBKNLlrHQx71bn9PR0UeB5vz3KsPcPJrgxFq28zL27nQkGoKBiEi2omVL8Wg+JJoCZN64H2UdneYP0IMSraDOXqBYafX0ACwAw0bl0CEPy1clKFQsFinva5/8wjfP/ILziVOM3S8oW8ecWreN4FBoHQyceo+P3HwTBIbPsLnNmrcWuWBpNrTDL5UGAbQTAYTSgIhkLluiT8mTmKodS01jT1OuxrCkLByc4MMdsgHjGJh4ITeEXEJB4y+m7nTuixST4E0vU0p7qCMHC8I8PR9gzHc7czbt/vTk3UZElNX2vB0powS6vDzCqz+v98yghOJqYNRui8m5kv2BiL/LrTHvubU5zpdoJ/Nzr4t+P5waiYYFvweQ18zPM1ru677fka16dw2yt6rCxksqDCZl7cZkFFiHkVNgviNrVlVmHRr4ml+oYUDlipUALADNab7SXpjlOi9n1wEoVCwWL5IPCDI7/gZCEI3MLz5l4+5iBgdp6i8rcfxuo4BgSL73iV9bi1y3OXFXg1y/AqFky6Jk9Dqb6ug1GEAmklEGPha82ZbofjHRmOtfddjndk6Mn0nVzLQ0bQSpALBPnb8+N2MEVwfg0JM4Q2Q2DY49NK4Hu5mfzOPZy5N+P1KxDd35ymoWt0X3CC4YjBtWUoTEVhiGIwXDGYwS8/VXK/xxV0ZzxOdwdDbIvZhmJe3C4EguA6CAjz4zazy+0RJ+FyfRdPe4TNEi4vnK8XsKNgWBIAZrpx7RKAIQsF8zzt80CuReBk4jRLyut58/JbuGbeFWMLAtrH7D6N2X4Uq+0wVtsRrLYjmF0NufX5wLeieLXLcGtXBMGgJggIOhy/0J+0pM63+0BaCcRYaa1pS7oDQkGWo+0Z2pN9fe0hU7GoKsSS6jCLc/UFS6rDLKoKE42Gwci1EpihCw7ZIxX5DRwNsj83GiS/5/x4MBpk7dxgJMji6lDfyb3oJJ8/wZdKMutxpsfhbI/D6W6Hsz1ZznQ7waXHoS3Zv27BVDCn3GZ+LhDMrwgxL24xu1xRHfOpimnKQxHidnnJjrGYNizilbVEo2NrKb0oAUApdRPwFcAE/kNr/fkBj78c+DRB95oL/K3W+uGRXlMCQH+e79Gd7cbxx3FVLNcJgsAQK2952ueBs4/y/cO/4GSikSXl9bwpFwRKMrGQk8LqOF4UCoJrI9Pddwzlc4sCQRAOvKqFpV0Z7wIVhwJLmYXroZqj860Enq+HHc0wJbhp7KansFr24lWvIFt35aBmTDF+utMexzoynMi1FBzvyHKiI0NDV9+cDABzy+0gENSEWVwdZnFtlKWz4tTEYygrPPoJbAYU+WVdn0NtmULtxv6mFEfbM4X3nlVmsa7oZL92TpSa2OT5N1ss4/qc7ckHgmwhGOTvt/S6/f6NKqCmzKTMNjFV0EphFrU8FLdCWLnFnIr3sVT//c2iAGQZweiTaCzGn1+ziqrY8LMNDmfcA4BSygQOAi8EGoAdwOu11vuK9ikHElprrZTaBPxUa71mpNeVADCY1ppep5fUeM+k5aRzhYKDWxw87fPg2cf478M/52SikcXldbx5+atKFwSKaY2RbC20EuRDgdl5vDCNqDZs3JolhVDg1S7DK5+HH6vNrS438f17wTCyvtEH+daCoUKB6/uF4jJdXGjmB+k52KYndh0FN4Xd9DT2mZ3Yp3diN+9BFQVT346RXfg8skuvJ7PoeTAOIz/EuWVdn1NdWU50ZINgkAsIJzqyJIumnC4LGSypDroQFtfGWFxbzuJZFdTPimMXrx2gNV6qi6NNHbmTfZr9TSkOt2WChX2AqogZDOnMzfOwbk6U2eUXuR6hxLK+Q9pLk/WyOJ6mNeHR1OPR3BtctydB+1auJiGoUfD8vlY+Txffp18tg6eLthfVPBTXMQA8+IHrWFR7/v+OLkYAuAr4hNb6xtz9DwNorT83wv7f0VqvHel1JQAML+tlSTrJ8SkQzNM6qA/IJoccxpsPAt8/8nNO9DayqKyON6+4hWvnXTnuCxDhOZidJ/t1IVjthzETrf1/BCuMH63Fj9XgxWrwY7PwYzX4sdrcJXc7WgPmxf9GYhpGodhwpFAwFE1fOMhXnefDQT4s+KUKC/kT/ukdhM7sxGreg/JdtDJxZ63FWXAZzvxtOHPWY7XsI3zsXsIn7sNItaPNENn655BZej3ZRdeiI5UXeDDiQmmtaUm4hVBwoiNbaEHID8WEoPm7rirMkpoY1WU2R5p7ONiSLixzXR4ycvM39J3w58XtSV18OVpaa9J+hrSXxjvHmgVhMzx+XQBaE62opbw8PqbP9WIEgFcDN2mt35m7/2bgCq31ewfs90rgc8Ac4MVa60dGel0JAOfm+i4pN0XaTZd2KuFivheMFnDSQz9cCAK/4HhvA4vKFvDm5bdw7fyrxj8IDKDSXVjtRzF6WzBS7RiJVsxUO0ayDSPRFmxLdw39c0SqCoHAKw4HhdtBeNCh8nFtVTCUgamM3GyGRt99wyzMoDgWvtaFYWnn5KRQZ3ZjNO5ANTyOOvt04YSv56zDr9+Grr8cf/4lEO77w6d1MHzO9TSO62KefZLQsXsJH7sXM3EWrUycBduCMLDkOvwSTTolSieR9QotBic6MhxvD263JV2W1YRZOzfK+tzJvr4yNLlP9r6L1X4Iq3kP2orizLsEP1434r9fz/dIeWkyfmbY+UQGGs8AAFBeWUu0bGz1TxcjAPwZcOOAAHC51vpvhtn/GuBjWusXDPHYu4B3ASxatGjriRMnxnrcM4qvfdJumqSbHL9CwSEmEhp4DA81Pc5/H/55IQi8afktbJ+AIDAizwmCQDIXDAqXdsyi20aybcjpS7VhgmH3jcnOT96Sm6ylb6y2iVZGYZx28fbi/fptN0y0GcaPVuNHq3LXfRcdqcAwQ6UPCE4KTj8JDY/Dqcfh7B7wneC45q6H+sth4eWw4NJ+J/xzKdQ4eD7+2Wcwj/ye0LF7sLpOoFG4czeTWXo9mSXPx6+oH9uxC5GjMt3YTU9jNe3Gbnoq6Joa0F3qRWfhztuCM+8SnLlbcGetBsMm4wXf9p0xTF400wPAeXUB5PY5BmzTWrcOt4+0AIxN2k2TclPjVyw4Qn0A5IPADr5/+Occ6z3FwrIFvGn5K7lu/nMmVxA4F61R2d7BQSHVCb6L0l4w5tn3gnoE7QW3c9fBbb9v+1D7aH/wdieNke4Kbg88JBQ6UjkgHPTd1tFqdKwWFa1BxWZhRioxDHNwQHCScHr3MCf8DcHJvv5yqLsEQqX9w+Z6Hl7rYTj0O8yj92K1HggOqXZNUDOw9Hq86uUlfU8xDWmN2XUCq+mp4GTftBur40jwkDJwa1bhzt2MM28LzpxNKDeFffbJ4NK0G7PnNAC+FSE1ay2p2etJztlIavZa/PP8nZ/pAcAiKAK8HmgkKAJ8g9b6maJ9VgBHckWAlwK/Aur1CC8uAeDCOL5Dyk2RcTOl7x44R30ABEHg4aYd/HdREHjj8lfw/HnPKenCQ9NSbtlUI9XR/5LsQKU6MNKd/bdneoZ+GcPqHxAiVZg9Z7Ga9xWa9L05a/HrtgbN+gsuwQjHMZRCYeTmsB/f0KY7T+If+j0c/j3mmd0AuFVLySy5nuzS63FnrS1Zl4simA5aDTFnf377iMc64j+jkf+N5aeQzk9UI9NJnyc3jd2yr+/bfdNTGOkOAPxQHGfu5uCEP3czzpyNIxaeOr6D092A1fQE0aa9RJv3EOk4gtI+GkWmehnJORtIzdlAcvYG3PK5Ix7ajA4AuTd5EfBlgmGA39Faf1Yp9W4ArfVtSqkPAm8BHCAFfECGAV4cvvZJuSlSbqr03QPnqA/Iv//DTTv4/pFfcLTnJPWx+Txn7lYiRpiQGSJshAibuYsRImSGiBTdHvi4bUyPIqOS8px+oUCligNC/7DgR6vJ1l2Ks+ASnHkbg5ES55A/QRq5UFAcDhTBdfF2hRrbf6PeJjh8L/rw7+DUDpT28Mvn57oJrseZu7nfULXiE3q/xXqKTuiGCoZVGar/KpMTzdd9VeKu7+dmt/MndnTHJGIkmoNv92d3B9/uWw+gdNA871Yuzp3st+DM3YxXveyccxrki/oyXgZ3iGZ+5aSItu4n1ryHaPNeoi37MHPdB05sdl8gmLORTNXSfr+HMz4AjAcJAKWltSbjZUi6ySH/AVyQc9QHQBAE/ti0kx8d/V+O9zaQHWMXhUIRNkOEDDt3nQ8HYcKmTcSMUF82j1UVy1hZsYS6svlTq+thGlEKFEbuWuXCQn7R5nyo6AsL+TChCAo6jaMPYBy5B078CeVl0ZFKdNUSqKxDVdajKuqgog4q6yG+AKzzHyc92fQFAz83FS540z0Y+B5W+0Gss33f7s3eoIlem2GcORuKvt1vgmhN8LyiUJfPm33Lh3t4voenPTztkvEdPN8f/eRbvke44yixlr1Em/cSa96LnWwBwLNjQbfBnI0k52zAn7uZ8tic0n0eA0gAECXleA5JN0lmFNN3nt8Lj1wfUMzXPlnfIeNlyfpZ0l6WrJcl42fJeFkyXoaM7xRtywTbc9vSfiZ4LLct2D9Lyk1zKnG6EDAiZpgVFUtYWbGUlRVLWFWxjEVlC6QbYgpR2QShk48SatiB1X0ao+csRu/ZwlwQENRHqLLZQRioqIPKOqioz13XQXxeMPvdFBWMF/fxc5NGeRq8qTpxFIDWhDqeJXLoTkKHf4NKBCdXXTYHveAS9PxLghqU2WtQZqjvBD+gFUdrjauDE73ru7i+h6vdEbtYPK3xdPBZen4wbNbTGt8fubPU6m0i1ryXaMteYs17CHccQ6GD0S11V5Be8SKyS64LRgqVkAQAMS483wuGEXrp0nUPaB0UmWUTE7YMuOd7nEg0cqj7GIe6j3Oo6xiHe46TzgWekGGzPL6YlZVLC8FgSflC7Ek0o6A4B9/DSLRg9pzF7DmD0X0Gq/dMcL/7DKq3uV8hpVYGqnxuEAYKAaG4BWFe34ySWoPvgpsBLwNuOnc7G4RcLxPcLzyev6SDfdyi5xTvE58Pi64MCizPYzTFSDytcbzgZFaYRGYSBgNDBbPbhRKnsQ/dhfnsr1HtR4I1CpZeC6tuhLqtwWc0TPeRr/3gJK+9wone015JW0fyw2Xz82t4uVUhh2qFMbK9RFv2U9G8h/jxP2D2nEabYTKLryWz4mayC59bktApAUCMK601aS9N0kniDVF9PiajqA+4mDzt05g4w8HuY4VgcLj7GIlcP5+tLJbGF+YCwVJWVi5lWflCQlP4W+OM5rm5gHAmuHSfwew9g9kdBAbV21xYewJAKxMVLgc3i/YywQiOMdKoYCpkKwxmGG2FwbRRXY0oLxO817yNsOiqIBDMv6Tk3RfFLQb5meYuVo2BAizTwDKCa9vpxjx0N+z/FTTuCnaquwzWvgRW3gTRqkGvUTjB564d3xu/Ic6jpMnPzhe0Fni5SbdsI0S5WYbZ9BThw3cRPnI3RroDPxQnu/QFpFfcjDP/stFPtTyABABx0WS9bDB6oFTdA6OoD5govvY5k2zmUPexfsGgx+kFgul7F5fXsSofCiqWsiy+iKgVmeAjFxfMczASzUEwyIUElenJnbBDaDMcrKJnhXNrtufuF9/O72eF0WY4dz+UmxNiiG+xbgb77F5CjTsJNe7Eaj4QVJ5bYfwFl+IvvAIWXYk5Zz3GOC3nW1x8GNQZXNioBAUYhsI2FZZhFK5xM3D0vuCkf+zBYJhpzXJY+1JY8xKorEfnm+K1l2vGz3/Dd6dUzUPYDFEZKjpB+y6cfAQO/BoO/T5oES2bDatfhF7zkmBuDaX6/YzFP27+nJvfZkarMMLnLtYdigQAMSYln2XwPOoDJpLWmqZUay4M9AWDzmywKJGBYlF5HSsrlrK6chmrKpaxvGIxkVIuBypmBJXpxT79ZBAIGnZidRwHwA/Hceq24izchl9/Oap6KaZh5iZ96psAqpQ0xcEgmM1xqH7xYAEbhW0pzNwJv9Avr/1gXon9v4JDd0O2F102G3/VzWRX34w3ayUeGl/7uRP/5P5bMFqDAkAxJw3H7of9v4bjDwRfhKoWByFo7Uugeum53yBSCaGxrachAUBckJIOI8zXBzipSR8Eimmtac10BIGg62ghFLRnOoEgFCwury+EgpUVSyUUiPNmJFqxG3cRatxFqGEnZm8TAF7ZHLL1l5Gtvwynbit+2azcEEcDS5kYuVCQH1mRPyWrohEXFzI80/V9PK2xDSM3iiNQ+AbfvB914FeYB3+L0duEtmNklm0nteoGnAWXjrnpe6oYMQAUS3cFLQLP3gknHwV00Bqw5iWw6kUQH2a+AQkAYqLl6wRSbqo0wwh9L0jDXja4PseCG5NNXyg4ysGuYxzsPsqzXUf7WgqUweKyOlblWglWVS5leXwxYakpEKOhNWZXA3bjTkINQSjIL43tVi8hW7eVbP02nAVb0OHz6x9WheFzqt8QTVW4b+SCBP1CQ7653tM+dJ8hdOh3RA7+Dqv9CNowyS68kvSqG8gsfi7YM6ebbNQBoFhvExz8bdAy0LQHUMEMnGteAitvCE76eRIAxGQyLqsR+n4QBnwnFwxKPFfBRRCEgvZCIMhfF4eCJeX1hUCwqmIZy+OLpNBQnJv2sVoPEWrYGbQSnHkK5aaDaW9nryFbdyl+2axcTUIkKDy0+m5rM4y2+4oStRUOKvDPo0VAZXoIH7mPyKHfYZ/ejULjzN1AetWNpJc/Hz1EMd9MMKYAUKzjOBy4Ew78Krht2LD0miAMLNsejFCRACAmG9d3g/kExmO6Yd/PtQxkp2wggNzSq+n2XCAIug8Odh2lywmm7zWVGYSCymWsqghaCRbE5lIVqpAZD8XwvCx20zOFQGA37Rty/YiRaGXkihf7QoHOhYbioKCtMEamh9DJx1C+g1u5kPSqG8msfCFepSzidMEBIE9raH4mKB48cBckmoMpjVe/CF7wCahaeN4vKQFAjLtxnW44T2tws7lA4E7KUQWjpbWmOd3WLxAc7D5Kd270AUDMjLIgNof5sbksyF3qctezIrUyu6Hoz8uiskmUl0E5aZSXATeLctMoN1PYjpcJ7hcuwXwFaqjtRdtQJpklV5NedSPu7DXjuiT2VFOyAFDM96BhR1AvcOQ+eO8OiNWc98tIABAXjda6EARKNp/A8G/W10LgOkHXwRQaOjRQfvTBsd5TnE42cSbZxOlUE6eTzZxJNuEWfZ62spgbnZ0LBnNYEJtXCAnzo7OlS0GIi2hcAkCxUDlEJmYeAJkaTYyaUoqYHSNmx8h4GVJOqrR1Av3fLDd5SghC5AKBC34m6D7QAy/jcxilopRiXmw282KzBz3maZ/WdBunk025S3NwnWpib8ezJL2+Nc8VilmRahZE57KgbB4LonMK4WBBbC7l9tjGEwshJsgEjqKQACDGJGyGCZthHN8JCga9bOnrBIopBZYNDDOBypChwAuCwyQPC6YymBudzdzobC6p3dDvMa01XU5PUThoyrUgNPNYy5OFoYp5ETNMVaiCylAFlXacylBwqQpVUGEH11WhCipCcapCccqs2LgvCSzEVJX1shzoOsy6qpXMipx/E/1kJwFAXBDbsKkMV47PugPnwzCAUZ7IBoUFL3c9+cKCUqpw0l5XtXLQ4yk3zelUEAhOJ5toy3TQle2hM9tNV7abE70NdDk9hXUSBjKUQWUuGORDQRAcKnLhoYKqcCWV4Soqw5VUWGWEDHNKzfMgxGgl3CTPdBxkT8ezPN2xn2c7j+Bol49u/hteu+ylE314JScBQJSEaZiUh8op02W5qT41OjcrWL7OxNd+YVvx/fy++etxN6awUBQOKG5Z0EFBT/72RRa1IiyPL2Z5fPGI+6W9DF3Zntylm06nm+5sD51OD11ObyE0HOttpDPbTU+2Z9j/FiEjRDwUJx4qJ27HidtlxO0yyu0yKqwyyq0YFVaMcruMuF3e97hVJqs0ikmlI9PFno4DucuzHOk+jo/GVCYrK5bwysU3cemsDTx37raJPtRxIQFAlJRSCluNfZ7zfsEBDRp8ghCRDw6udnNLg16EoYPnExZg6K4I/L7tkAsKuigwDLhddHVBFKBMMEwidoRIrJq5BPdRRu566GpvT3v0ZHvozHTSnemmM9NJV6aLnmxPcHF6CrfPplo43HWM7mw3aW/kxaHKrFhfWLDLKbf6QkJFqJzacDWzwjXMilQzK1Ijsy2KkskX4uZP+E93HOBU4jQAYSPE2qoVvHH5K9lUs5a1lSsKa4KMexHgBJIAICaV/FSno+mXDtYK7wsD+ctFaUUYzvkGhpHkQ0E+MAzaxoDtOjixn+PkPhqmMqkKV1EVrjqv5zm+Q0+2h95s76CgMPDSm+2hNXE6t08vrh4c6OJ2WSEQ1IZrmB2pYVakhlnhICDMjtRQYcdlTgUxiNaaE4lG9rTvZ0/Hs+zpOEBzug2AcquMDdWruanuWjZWr2FV5bIZuVz4zPuJxbSRb22wjf4tDgMDgavdqbkwSf6kNoVObrZhUxOpoeY8C6a01iTdJG2pNlqTLbQkm2lNNtOaaqE11Uprqo0jPSfpyHQNCni2YTMrXE1tJGg9GCok1ISrZ+Qf+GnLMMG0g1n1cisrep7Doc5D7Gndw9Nte9nbtp/u3IRcteEqNlav5bXVa9hYs5ql5Qul+BUJAGIasgwLa8Af+/y64/lQ4PjO1AwF05RSijK7jDK7jEUVi4beSWtcJ017qoWWZBOtyVZaU820pttpS3fQkm7jYPdR/tS8k6w/eCKpMiuGbVjYhoWlLGzDDm4bFraysAyz8JjVb7/gfv524TUGPF5hlzMnUsuc6CwqpVWidBRghnDw6XRSdLkJOrPddGQ66Mx00pHu4HDnYZ5pfabQBVVXXsdz6q5m4+yNbJq1ifmxeaihCn/94utJNjzoIpAAIGYE0zAxMQkX9Sn72sfzPRzfKYQDz/cmtgtBDE8prFCUOaFFzKksCgl+7g+474D20K5DT6aLlnQrremOICBk2unO9uLofAAMWoYc3yu0Ejm+S8ZJ4vhObj+vaD+3337nEjJs5kRmMSdaG4SCwu1ZzInOYk6kdsYvHOVpnx6nl85MFx3Z7sLIlQ4nKE7tzBWmdma66Mx00ls0k2YxS1ksqljETUtvYuOsjWyctZHaaO0Qe57jG39xQa/vAbmwoKygFW4aBgQJAGLGMpSBYRrYZl8Xgta60ELgahfHc8Z/1kNxYQwjV3sR/HdUYagoq6HCX8TyfDDI/2FXKqiRgNx1rmYiv734ehjBMrm54Jj7XXF8h65MF83JZpp7z9KcOE1zoonmVCs7Wp+ifYiui0o7XggDheui2zXhqinVTO3nT+i5kSYduRN6Z+G6h85sV3BSzwajUPwhwraBQUW4gupwNVWRKlZUrwhuh6uoilQValPy98usstK0tigF5hCnRDMMoQpw08FS51522oQBCQBCFFFKYZv2sKEgf5HugynAyI14oLTftJVShW6CYnNjc1lVvapvg9bgZsBN42STtKbbaU630pxqozndVrjdmDzLk23P9JvxEcBSJrMiNcyJ1DI7Uku5XUbEDBcuUTNMxIz0bbPyj0Vyj0eImuExD730fI8up6ffCXzgCT0/pLQr2zPsCR2CoruqUAVV4QoWltexMbKBqkgtVZHq4FJ0co+H4phqkg0XVQrsaHDRetqEAQkAQpzDUKHA135fS4HUFIihKAV2BOwIdqic+ZE48915w06i1Oskc6GgNQgI+et0G890HiThpkh7GZwh6htGYitrUDgYeLENi26nN9fk3k2X002Pkxj6x0IRt8sKM04uKqujsrpvlsnKcCVVuYmjqsJVVEaqsIxwUKw31DfsqWYahYFp8F9DiIvPUAYhM9RvYZ58oaHjOVN79IEoPdMCMw7hODgZcFPB6pdFyu0Y5fYilsWHKYLM8XyPtJ8h7WZIe32XlJfuux7wWDr3WPB4cN3t9NKcbiXtZnC1S9wupzJUwfKKRcEMkHZFbibIOFW5JvjKcCUV4UpM0yLoPjH7ukwucOjplFQcBnw/CANuesqEAQkAQpTIUIWGxcMR860FUmQ4w9nh4OJ7QRBw0uc1tbJpmJQZMcqs2IUfi2GAYRWdvPMn9FxdxTnqIUQRw4BQLLgUhwF36Gm4JwMJAEKMo+GGJHo6qD73tV+4LcWGM4xhBkvBhsqD1gA3FZwsxiMf9jvRW8Ft05KT+3iZImFAAoAQF1m+pSA0xDCwfBDIdyfkw4J0JUxzVii45E8WTio3FO085QsfDTOYJKfft3sxIQaFgVzQmwRhQAKAEJOIZVhYWDCgCDo/7XFx60E+KEiXwjRSfLJwndzJIt2/VSC/xoM54Bu9nOgnP8OAUFlwyYeBCVwgSwKAEFPAcNMeQ9Cl4Gu/UHQ48FK8AqOYQiw7uOh47ttirtBuOlTSi74wMIHkN0mIKS7fpWAz8iqMnu/1W1mxcBmwTQLDJJMfTihEiUkAEGKGyAeF0SgEghECQ742Ib+EsxBiapEAIIQYRCmFqUYfGAqtB1rj4xdqE4brkhBCTDwJAEKIC2Yoo/+89SPkhuLWheLgUNyiUPyYEGJ8SAAQQlxUY21dGKqwUYodhRg7CQBCiEltUOvCCAbWLnjaG7KeIR8WpH5BzGQSAIQQ08b5ti4AhRBQ3P0wKCigB42UkPAgpjoJAEKIGU0phUKNupWhWHF4KL7k6xmKbwsx2UgAEEKIMTqf8FAcBvKjJDzt4ft926VFYeIZykChUEphYAw5+dZ0IQFACCEugn61DMP0UBSPhhjYgtCvqyIXFCZjN0T+5Jm/XRyOio974LZi53r8XO+df9/CiTx3O38s+f8Wg/afYVMpSwAQQohJQimFpc7/z3I+CORrGNDBibO4VmHQdf527mRbOGnnTojFJ8fi7fkTZ/C//vuN9wk0f6zFoUBrXTjJi/MjAUAIIaa4wolacV4FkFNNcctC38YJOphpQCKTEEIIMQNJABBCCCFmIAkAQgghxAwkAUAIIYSYgSQACCGEEDOQBAAhhBBiBhpVAFBK3aSUelYpdVgp9aEhHn+jUurp3OVPSqnNpT9UIYQQQpTKOQOAUsoEvg7cDKwDXq+UWjdgt2PAtVrrTcCngW+V+kCFEEIIUTqjaQG4HDistT6qtc4CPwZeXryD1vpPWuuO3N1HgfrSHqYQQgghSmk0AaAOOFV0vyG3bTjvAH5zIQclhBBCiPE1mqmAh5poccjVGZRS1xEEgOcO8/i7gHcBLFq0aJSHKIQQQohSG00AaAAWFt2vB04P3EkptQn4D+BmrXXbUC+ktf4WufoApVSLUurEeR+xOJdZQOtEH8QMJZ/9xJHPfuLIZz9xVl/Ik0cTAHYAK5VSS4FG4HXAG4p3UEotAn4BvFlrfXA0b6y1nn2exypGQSm1U2t92UQfx0wkn/3Ekc9+4shnP3GUUjsv5PnnDABaa1cp9V7gboJVrL+jtX5GKfXu3OO3AR8DaoFv5FZrcuUXQgghhJi8RrUcsNb6LuCuAdtuK7r9TuCdpT00IYQQQowXmQlw+pE5GCaOfPYTRz77iSOf/cS5oM9eaT1kQb8QQgghpjFpARBCCCFmIAkAU5RSaqFS6j6l1H6l1DNKqf+T216jlPq9UupQ7rp6oo91ulJKmUqpJ5VSv87dl8/+IlBKVSmlfqaUOpD7/b9KPvuLQyn1vtzfm71Kqf9RSkXksx8fSqnvKKWalVJ7i7YN+1krpT6cW6/nWaXUjaN5DwkAU5cL/L3Wei1wJfDXuTUaPgTcq7VeCdybuy/Gx/8B9hfdl8/+4vgK8Fut9RpgM8F/A/nsx5lSqg74/4DLtNYbCEaFvQ757MfLfwE3Ddg25Ged+9v/OmB97jnfyK3jMyIJAFOU1vqM1vqJ3O0egj+CdQTrNHwvt9v3gFdMyAFOc0qpeuDFBJNf5clnP86UUhXANcB/Amits1rrTuSzv1gsIKqUsoAYwaRw8tmPA631g0D7gM3DfdYvB36stc5orY8BhwnW8RmRBIBpQCm1BLgEeAyYq7U+A0FIAOZM4KFNZ18G/gHwi7bJZz/+lgEtwHdz3S//oZQqQz77cae1bgT+BTgJnAG6tNa/Qz77i2m4z/p81+wBJABMeUqpcuDnwN9qrbsn+nhmAqXUS4BmrfWuiT6WGcgCLgW+qbW+BEggTc4XRa6/+eXAUmABUKaUetPEHpXIGfWaPcUkAExhSimb4OT/Q631L3Kbm5RS83OPzweaJ+r4prGrgZcppY4TLI/9fKXUD5DP/mJoABq01o/l7v+MIBDIZz/+XgAc01q3aK0dgunfn4N89hfTcJ/1qNbsGUgCwBSlgjmX/xPYr7X+16KH7gDemrv9VuCXF/vYpjut9Ye11vVa6yUEhTd/0Fq/Cfnsx53W+ixwSimVXwTlemAf8tlfDCeBK5VSsdzfn+sJao/ks794hvus7wBep5QK59btWQk8fq4Xk4mApiil1HOBh4A99PVD/yNBHcBPgUUE/2D/TGs9sJBElIhSajvwfq31S5RStchnP+6UUlsIii9DwFHg7QRfZuSzH2dKqU8CryUYhfQkwRTw5chnX3JKqf8BthOsttgEfBz4X4b5rJVSHwH+nOC/zd9qrX9zzveQACCEEELMPNIFIIQQQsxAEgCEEEKIGUgCgBBCCDEDSQAQQgghZiAJAEIIIcQMJAFACCGEmIEkAAghhBAzkAQAIYQQYgb6/wHsvdpSnMDsJAAAAABJRU5ErkJggg==\n",
478
+ "text/plain": [
479
+ "<Figure size 504x288 with 1 Axes>"
480
+ ]
481
+ },
482
+ "metadata": {
483
+ "needs_background": "light"
484
+ },
485
+ "output_type": "display_data"
486
+ }
487
+ ],
488
+ "source": [
489
+ "y_min = min([global_results[k][2].min() for k in global_results])\n",
490
+ "y_max = max([global_results[k][2].max() for k in global_results])\n",
491
+ "\n",
492
+ "fig2 = plt.figure(constrained_layout=True, figsize=(7, 4))\n",
493
+ "axes = plt.axes()\n",
494
+ "axes.set_xlim(2, 100)\n",
495
+ "#axes.set_ylim(y_min, y_max)\n",
496
+ "for k in global_results:\n",
497
+ " plot_with_confidence_intervals(plt, global_results[k][1], global_results[k][2], global_results[k][3], label=k)\n",
498
+ " #plt.plot(global_results_train_steps[k][1], global_results_train_steps[k][0], label=k)\n",
499
+ "plt.legend(loc=\"upper right\")"
500
+ ]
501
+ }
502
+ ],
503
+ "metadata": {
504
+ "kernelspec": {
505
+ "display_name": "Python [conda env:prior-fitting]",
506
+ "language": "python",
507
+ "name": "conda-env-prior-fitting-py"
508
+ },
509
+ "language_info": {
510
+ "codemirror_mode": {
511
+ "name": "ipython",
512
+ "version": 3
513
+ },
514
+ "file_extension": ".py",
515
+ "mimetype": "text/x-python",
516
+ "name": "python",
517
+ "nbconvert_exporter": "python",
518
+ "pygments_lexer": "ipython3",
519
+ "version": "3.9.6"
520
+ }
521
+ },
522
+ "nbformat": 4,
523
+ "nbformat_minor": 2
524
+ }
prior-fitting/notebooks/FewShotOmniglot.ipynb ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 3,
6
+ "id": "976fbfea",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import sys\n",
11
+ "sys.path.insert(0,'..')"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 4,
17
+ "id": "4b164f6b",
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "import torch\n",
22
+ "from torch import nn\n",
23
+ "\n",
24
+ "from tqdm import tqdm\n",
25
+ "\n",
26
+ "\n",
27
+ "from train import train\n",
28
+ "import priors\n",
29
+ "import encoders\n",
30
+ "import positional_encodings\n",
31
+ "import utils\n",
32
+ "import bar_distribution\n",
33
+ "\n",
34
+ "\n",
35
+ "from samlib.utils import chunker"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": null,
41
+ "id": "29d423b4",
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "mykwargs = \\\n",
46
+ "{\n",
47
+ " 'bptt': 5*5+1,\n",
48
+ "'nlayers': 6,\n",
49
+ " 'dropout': 0.0, 'steps_per_epoch': 100,\n",
50
+ " 'batch_size': 100}\n",
51
+ "mnist_jobs_5shot_pi_prior_search = [\n",
52
+ " pretrain_and_eval( {'num_features': 28 * 28, 'fuse_x_y': False, 'num_outputs': 5,\n",
53
+ " 'translations': False, 'jonas_style': True}, priors.stroke.DataLoader, Losses.ce, enc, emsize=emsize, nhead=nhead, warmup_epochs=warmup_epochs, nhid=nhid, y_encoder_generator=encoders.get_Canonical(5), lr=lr, epochs=epochs, single_eval_pos_gen=mykwargs['bptt']-1,\n",
54
+ " extra_prior_kwargs_dict={'num_features': 28*28, 'fuse_x_y': False, 'num_outputs':5, 'only_train_for_last_idx': True,\n",
55
+ " 'min_max_strokes': (1,max_strokes), 'min_max_len': (min_len, max_len), 'min_max_width': (min_width, max_width), 'max_offset': max_offset, 'max_target_offset': max_target_offset},\n",
56
+ " **mykwargs)\n",
57
+ " for max_strokes, min_len, max_len, min_width, max_width, max_offset, max_target_offset in random_hypers\n",
58
+ " for enc in [encoders.Linear] for emsize in [1024] for nhead in [4] for nhid in [emsize*2] for warmup_epochs in [5] for lr in [.00001] for epochs in [128,1024] for _ in range(1)]\n",
59
+ "\n",
60
+ "\n",
61
+ "\n"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": null,
67
+ "id": "deb93d1e",
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "\n",
72
+ "@torch.inference_mode()\n",
73
+ "def get_acc(finetuned_model, eval_pos, device='cpu', steps=100, train_mode=False, **mykwargs):\n",
74
+ " finetuned_model.to(device)\n",
75
+ " finetuned_model.eval()\n",
76
+ "\n",
77
+ " t_dl = priors.omniglot.DataLoader(steps, batch_size=1000, seq_len=mykwargs['bptt'], train=train_mode,\n",
78
+ " **mykwargs['extra_prior_kwargs_dict'])\n",
79
+ "\n",
80
+ " ps = []\n",
81
+ " ys = []\n",
82
+ " for x, y in tqdm(t_dl):\n",
83
+ " p = finetuned_model(tuple(e.to(device) for e in x), single_eval_pos=eval_pos)\n",
84
+ " ps.append(p)\n",
85
+ " ys.append(y)\n",
86
+ "\n",
87
+ " ps = torch.cat(ps, 1)\n",
88
+ " ys = torch.cat(ys, 1)\n",
89
+ "\n",
90
+ " def acc(ps, ys):\n",
91
+ " return (ps.argmax(-1) == ys.to(ps.device)).float().mean()\n",
92
+ "\n",
93
+ " a = acc(ps[eval_pos], ys[eval_pos]).cpu()\n",
94
+ " print(a.item())\n",
95
+ " return a\n",
96
+ "\n",
97
+ "\n",
98
+ "def train_and_eval(*args, **kwargs):\n",
99
+ " r = train(*args, **kwargs)\n",
100
+ " model = r[-1]\n",
101
+ " acc = get_acc(model, -1, device='cuda:0', **kwargs).cpu()\n",
102
+ " model.to('cpu')\n",
103
+ " return [acc]\n",
104
+ "\n",
105
+ "def pretrain_and_eval(extra_prior_kwargs_dict_eval,*args, **kwargs):\n",
106
+ " r = train(*args, **kwargs)\n",
107
+ " model = r[-1]\n",
108
+ " kwargs['extra_prior_kwargs_dict'] = extra_prior_kwargs_dict_eval\n",
109
+ " acc = get_acc(model, -1, device='cuda:0', **kwargs).cpu()\n",
110
+ " model.to('cpu')\n",
111
+ " return r, acc"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": null,
117
+ "id": "706ecbb7",
118
+ "metadata": {},
119
+ "outputs": [],
120
+ "source": [
121
+ "\n",
122
+ "emsize = 1024\n",
123
+ "# mnist_jobs_5shot_pi[20].result()[-1].state_dict()\n",
124
+ "mykwargs = \\\n",
125
+ " {'bptt': 5 * 5 + 1,\n",
126
+ " 'nlayers': 6,\n",
127
+ " 'nhead': 4, 'emsize': emsize,\n",
128
+ " 'encoder_generator': encoders.Linear, 'nhid': emsize * 2}\n",
129
+ "results = train_and_eval(priors.omniglot.DataLoader, Losses.ce, y_encoder_generator=encoders.get_Canonical(5),\n",
130
+ " load_weights_from_this_state_dict=mnist_jobs_5shot_pi_prior_search[67][0][-1].state_dict(), epochs=32, lr=.00001, dropout=dropout,\n",
131
+ " single_eval_pos_gen=mykwargs['bptt'] - 1,\n",
132
+ " extra_prior_kwargs_dict={'num_features': 28 * 28, 'fuse_x_y': False, 'num_outputs': 5,\n",
133
+ " 'translations': True, 'jonas_style': True},\n",
134
+ " batch_size=100, steps_per_epoch=200, **mykwargs)\n",
135
+ "\n"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "id": "611554b2",
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": []
145
+ }
146
+ ],
147
+ "metadata": {
148
+ "kernelspec": {
149
+ "display_name": "Python 3 (ipykernel)",
150
+ "language": "python",
151
+ "name": "python3"
152
+ },
153
+ "language_info": {
154
+ "codemirror_mode": {
155
+ "name": "ipython",
156
+ "version": 3
157
+ },
158
+ "file_extension": ".py",
159
+ "mimetype": "text/x-python",
160
+ "name": "python",
161
+ "nbconvert_exporter": "python",
162
+ "pygments_lexer": "ipython3",
163
+ "version": "3.9.5"
164
+ }
165
+ },
166
+ "nbformat": 4,
167
+ "nbformat_minor": 5
168
+ }
prior-fitting/notebooks/SetupForGPFittingExperiments.ipynb ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 4,
6
+ "id": "111c502f",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import sys\n",
11
+ "sys.path.insert(0,'..')"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 10,
17
+ "id": "e6b59ce3",
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "import torch\n",
22
+ "from torch import nn\n",
23
+ "\n",
24
+ "\n",
25
+ "from train import train\n",
26
+ "import priors\n",
27
+ "import encoders\n",
28
+ "import positional_encodings\n",
29
+ "import utils\n",
30
+ "import bar_distribution\n",
31
+ "import transformer\n",
32
+ "\n",
33
+ "from samlib.utils import chunker"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 12,
39
+ "id": "acf7423d",
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "kwargs = \\\n",
44
+ "{\n",
45
+ " 'nlayers': 6, \n",
46
+ " 'dropout': 0.0, 'steps_per_epoch': 100, \n",
47
+ "}\n",
48
+ " \n",
49
+ " \n",
50
+ "def train_and_compare_fast_gp_mix(*args, **kwargs):\n",
51
+ " hps = kwargs['extra_prior_kwargs_dict']['hyperparameters']\n",
52
+ " num_features = kwargs['extra_prior_kwargs_dict']['num_features']\n",
53
+ " baseline_res = priors.fast_gp_mix.evaluate(\n",
54
+ " *args[0].get_batch_method(10000,kwargs['bptt'],num_features, hyperparameters=hps),\n",
55
+ " hyperparameters=hps, \n",
56
+ " use_mse=Losses.mse == args[2])\n",
57
+ " print(baseline_res, 'with fast_gp_mix')\n",
58
+ " \n",
59
+ " res = train(*args, **kwargs)\n",
60
+ " return res, baseline_res\n",
61
+ "\n",
62
+ "def train_and_compare_fast_gp(*args, num_evals=1000, **kwargs):\n",
63
+ " hps = kwargs['extra_prior_kwargs_dict']['hyperparameters']\n",
64
+ " num_features = kwargs['extra_prior_kwargs_dict']['num_features']\n",
65
+ " baseline_res = priors.fast_gp.evaluate(\n",
66
+ " *args[0].get_batch_method(num_evals,kwargs['bptt'],num_features, hyperparameters=hps, device='cpu'),\n",
67
+ " hyperparameters=hps, \n",
68
+ " use_mse=Losses.mse == args[2], device='cpu')\n",
69
+ " print(baseline_res, 'with fast_gp')\n",
70
+ " \n",
71
+ " res = train(*args, **kwargs)\n",
72
+ " return res, baseline_res\n",
73
+ "\n",
74
+ "def train_and_compare_gp(*args, num_evals=10000, **kwargs):\n",
75
+ " num_features = kwargs['extra_prior_kwargs_dict']['num_features']\n",
76
+ " baseline_res = priors.gp.evaluate(\n",
77
+ " *args[0].get_batch_method(num_evals,kwargs['bptt'],num_features),\n",
78
+ " use_mse=Losses.mse == args[2])\n",
79
+ " print(baseline_res, 'with fast_gp')\n",
80
+ " \n",
81
+ " res = train(*args, **kwargs)\n",
82
+ " return res, baseline_res\n",
83
+ "\n"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 13,
89
+ "id": "da083e24",
90
+ "metadata": {},
91
+ "outputs": [],
92
+ "source": [
93
+ "import gpytorch\n",
94
+ "hps = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .6, 'fast_computations': (False,False,False)}\n",
95
+ "\n",
96
+ "import numpy as np, scipy.stats as st\n",
97
+ "\n",
98
+ "def compute_mean_and_conf_interval(accuracies, confidence=.95):\n",
99
+ " accuracies = np.array(accuracies)\n",
100
+ " n = len(accuracies)\n",
101
+ " m, se = np.mean(accuracies, -1), st.sem(accuracies, -1)\n",
102
+ " h = se * st.t.ppf((1 + confidence) / 2., n-1)\n",
103
+ " return m, h\n",
104
+ "\n",
105
+ "\n",
106
+ "def bl(hps,bptt, num_evals=100, num_features=1, step_size=1, evals_per_batch=None, speedups=(False,False,False,False)):\n",
107
+ " if evals_per_batch is None:\n",
108
+ " evals_per_batch = num_evals\n",
109
+ " else:\n",
110
+ " assert num_evals%evals_per_batch == 0\n",
111
+ " results = []\n",
112
+ " for batch_i in range(num_evals//evals_per_batch):\n",
113
+ " with gpytorch.settings.fast_computations(False,False,False):\n",
114
+ " batch = priors.fast_gp.get_batch(evals_per_batch,bptt,num_features, hyperparameters=hps)\n",
115
+ " with gpytorch.settings.fast_pred_var(speedups[0]), gpytorch.settings.fast_computations(*speedups[1:]):\n",
116
+ " all_res, baseline_res,_ = priors.fast_gp.evaluate(\n",
117
+ " *batch,\n",
118
+ " hyperparameters=hps, step_size=step_size\n",
119
+ " )\n",
120
+ " print(baseline_res, 'with fast_gp')\n",
121
+ " \n",
122
+ " results.append(all_res)\n",
123
+ " all_results = torch.cat(results,1) # seq x batch_size\n",
124
+ " return compute_mean_and_conf_interval(all_results) # mean array, var array\n",
125
+ " \n",
126
+ " \n",
127
+ "#settings = [{'num_evals':n,} for n in [100,1000]]\n",
128
+ " \n",
129
+ "#js = [ex.submit(bl, hps, 2000, step_size=100, evals_per_batch=2, num_features=5, **kwargs) for kwargs in settings]\n",
130
+ "\n",
131
+ "\n"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "id": "8088aa12",
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "# below you can simply replace the prior to priors.fast_gp_mix to do experiments over mixtures of GPs"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": null,
147
+ "id": "165e683c",
148
+ "metadata": {},
149
+ "outputs": [],
150
+ "source": [
151
+ "num_features = 5\n",
152
+ "hps = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .6, 'fast_computations': (False,False,False)}\n",
153
+ "ys = priors.fast_gp.get_batch(100000,20,num_features, hyperparameters=hps)[1]\n",
154
+ "fivefeature_jobs = [\n",
155
+ " train(priors.fast_gp.DataLoader, bar_distribution.FullSupportBarDistribution(bar_distribution.get_bucket_limits(num_borders, ys=ys)), enc, emsize=emsize, nhead=nhead, warmup_epochs=warmup_epochs, y_encoder_generator=y_enc, pos_encoder_generator=pos_enc,\n",
156
+ " batch_size=batch_size, scheduler=decay, extra_prior_kwargs_dict={'num_features': num_features, 'fuse_x_y': False, 'hyperparameters': hps},\n",
157
+ " epochs=epochs, lr=lr, input_normalization=input_norm, bptt=2010, single_eval_pos_gen=single_eval_pos,aggregate_k_gradients=step_every, **kwargs) \n",
158
+ " for enc in [encoders.Linear] for y_enc in [encoders.Linear] for emsize in [512] for nhead in [4] for nhid in [emsize*2] for epochs in [50*25,100*25,200*25,400*25] \n",
159
+ " for warmup_epochs in [epochs//4] for input_norm in [False]\n",
160
+ " for batch_size in [4] for step_every in [100//batch_size] for lr in [.0001,.0003,.001] for decay in [utils.get_cosine_schedule_with_warmup] for num_borders in [1000,10000] \n",
161
+ " for single_eval_pos in [utils.get_weighted_single_eval_pos_sampler(2000)]\n",
162
+ " for pos_enc in [positional_encodings.PositionalEncoding if single_eval_pos is None else positional_encodings.NoPositionalEncoding] \n",
163
+ " for redo in range(1)\n",
164
+ "]\n",
165
+ "\n",
166
+ "\n",
167
+ "\n"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": 14,
173
+ "id": "15d01f3b",
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "import numpy as np, scipy.stats as st\n",
178
+ "\n",
179
+ "def compute_mean_and_conf_interval(accuracies, confidence=.95):\n",
180
+ " accuracies = np.array(accuracies)\n",
181
+ " n = len(accuracies)\n",
182
+ " m, se = np.mean(accuracies), st.sem(accuracies)\n",
183
+ " h = se * st.t.ppf((1 + confidence) / 2., n-1)\n",
184
+ " return m, h\n",
185
+ "hps = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .6, 'fast_computations': (False,False,False)}\n",
186
+ "\n",
187
+ "@torch.inference_mode()\n",
188
+ "def run_test(model,device='cuda:0',step_size=100, start_pos=1, batch_size=1000, sub_batch_size=10, seq_len=2000):\n",
189
+ " assert batch_size % sub_batch_size == 0\n",
190
+ " model.to(device)\n",
191
+ "\n",
192
+ " model.eval()\n",
193
+ " nlls = []\n",
194
+ " nll_confidences = []\n",
195
+ " mses = []\n",
196
+ " max_mses = []\n",
197
+ " eval_positions = []\n",
198
+ " \n",
199
+ " def get_metrics(model, eval_pos, batch_size):\n",
200
+ " x,y, target_y = priors.fast_gp.get_batch(batch_size=batch_size, seq_len=eval_pos+1, num_features=5,hyperparameters=hps, device=device)\n",
201
+ " logits = model((x,y), single_eval_pos=eval_pos)\n",
202
+ " if isinstance(model.criterion,nn.GaussianNLLLoss):\n",
203
+ " nll = model.criterion(logits[0][...,0], target_y[eval_pos], var=logits[0][...,1].abs())\n",
204
+ " return nll, 0., 0.\n",
205
+ " means = model.criterion.mean(logits) # num_evals x batch_size\n",
206
+ " maxs = (model.criterion.borders[logits.argmax(-1)] + model.criterion.borders[logits.argmax(-1)+1])/2\n",
207
+ " mse = nn.MSELoss()\n",
208
+ " nll = model.criterion(logits[0], target_y[eval_pos])\n",
209
+ " return nll, mse(means[0], target_y[eval_pos]), mse(maxs[0], target_y[eval_pos])\n",
210
+ " \n",
211
+ " \n",
212
+ " for eval_pos in range(start_pos, seq_len, step_size):\n",
213
+ " eval_positions.append(eval_pos)\n",
214
+ " print(eval_pos)\n",
215
+ " \n",
216
+ " nll = []\n",
217
+ " mean_mse = []\n",
218
+ " max_mse = []\n",
219
+ " for i in range(batch_size//sub_batch_size):\n",
220
+ " batch_nll, batch_mean_mse, batch_max_mse = get_metrics(model, eval_pos, sub_batch_size)\n",
221
+ " nll.append(batch_nll)\n",
222
+ " mean_mse.append(batch_mean_mse)\n",
223
+ " max_mse.append(batch_max_mse)\n",
224
+ " \n",
225
+ " nll = torch.cat(nll)\n",
226
+ " mean_mse = torch.tensor(mean_mse).mean()\n",
227
+ " max_mse = torch.tensor(max_mse).mean()\n",
228
+ " \n",
229
+ " \n",
230
+ " mses.append(mean_mse)\n",
231
+ " max_mses.append(max_mse)\n",
232
+ " nlls.append(nll.mean())\n",
233
+ " nll_confidences.append(compute_mean_and_conf_interval(nll.to('cpu'))[1])\n",
234
+ " return eval_positions, torch.stack(mses).to('cpu'), torch.stack(max_mses).to('cpu'), torch.stack(nlls).to('cpu'), torch.tensor(nll_confidences).to('cpu')\n",
235
+ "\n",
236
+ "\n",
237
+ "\n"
238
+ ]
239
+ },
240
+ {
241
+ "cell_type": "code",
242
+ "execution_count": null,
243
+ "id": "755e88e4",
244
+ "metadata": {},
245
+ "outputs": [],
246
+ "source": []
247
+ }
248
+ ],
249
+ "metadata": {
250
+ "kernelspec": {
251
+ "display_name": "Python 3 (ipykernel)",
252
+ "language": "python",
253
+ "name": "python3"
254
+ },
255
+ "language_info": {
256
+ "codemirror_mode": {
257
+ "name": "ipython",
258
+ "version": 3
259
+ },
260
+ "file_extension": ".py",
261
+ "mimetype": "text/x-python",
262
+ "name": "python",
263
+ "nbconvert_exporter": "python",
264
+ "pygments_lexer": "ipython3",
265
+ "version": "3.9.5"
266
+ }
267
+ },
268
+ "nbformat": 4,
269
+ "nbformat_minor": 5
270
+ }
prior-fitting/notebooks/TabularEvalSimple.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
prior-fitting/notebooks/Untitled.ipynb ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "a873fcbb",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import sys\n",
11
+ "sys.path.insert(0,'..')"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 5,
17
+ "id": "56023c88",
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "import random\n",
22
+ "\n",
23
+ "import numpy as np\n",
24
+ "import torch\n",
25
+ "from torch import nn\n",
26
+ "from sklearn.gaussian_process import GaussianProcessRegressor\n",
27
+ "from sklearn.gaussian_process.kernels import RBF, DotProduct, WhiteKernel\n",
28
+ "from priors.utils import get_batch_to_dataloader"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": 68,
34
+ "id": "036c690b",
35
+ "metadata": {},
36
+ "outputs": [],
37
+ "source": [
38
+ "def get_gp():\n",
39
+ " gp = GaussianProcessRegressor(\n",
40
+ " kernel=RBF(length_scale=.6, length_scale_bounds='fixed'),\n",
41
+ " random_state=0, optimizer=None)\n",
42
+ " return gp"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": 77,
48
+ "id": "ff8a3cd1",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "seq_len = 4\n",
53
+ "num_features = 10\n",
54
+ "x = torch.rand(seq_len, num_features)\n",
55
+ "gpr = get_gp()\n",
56
+ "y = gpr.sample_y(x, random_state=random.randint(0, 2 ** 32)).squeeze()\n"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": 78,
62
+ "id": "46fe34a9",
63
+ "metadata": {},
64
+ "outputs": [
65
+ {
66
+ "name": "stdout",
67
+ "output_type": "stream",
68
+ "text": [
69
+ "[-0.29995838] [0.90399136]\n",
70
+ "[-0.1039504] [0.98874968]\n",
71
+ "[-0.03414801] [0.99876344]\n",
72
+ "[-0.01104748] [0.99986603]\n",
73
+ "[-0.00356252] [0.9999855]\n",
74
+ "[-0.00114827] [0.99999843]\n",
75
+ "[-0.00037014] [0.99999983]\n",
76
+ "[-0.00011934] [0.99999998]\n",
77
+ "[-3.8486538e-05] [1.]\n",
78
+ "[-1.24147253e-05] [1.]\n",
79
+ "[-4.00568455e-06] [1.]\n",
80
+ "[-1.2927993e-06] [1.]\n",
81
+ "[-4.17353027e-07] [1.]\n",
82
+ "[-1.34771328e-07] [1.]\n",
83
+ "[-4.35327732e-08] [1.]\n",
84
+ "[-1.40657691e-08] [1.]\n",
85
+ "[-4.54613576e-09] [1.]\n",
86
+ "[-1.46979425e-09] [1.]\n",
87
+ "[-4.75345491e-10] [1.]\n"
88
+ ]
89
+ }
90
+ ],
91
+ "source": [
92
+ "for num_copies in range(1,20):\n",
93
+ " gp = get_gp()\n",
94
+ " x_copied = x.tile((1,num_copies))\n",
95
+ " gp.fit(x_copied[:-1],y[:-1])\n",
96
+ " m,s = gp.predict(x_copied[-1].reshape(1,-1), return_std=True)\n",
97
+ " print(m,s)"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": 79,
103
+ "id": "87752b3d",
104
+ "metadata": {},
105
+ "outputs": [
106
+ {
107
+ "data": {
108
+ "text/plain": [
109
+ "array([[1. , 0.1047567 , 0.17720387, 0.33463634],\n",
110
+ " [0.1047567 , 1. , 0.14686013, 0.04858264],\n",
111
+ " [0.17720387, 0.14686013, 1. , 0.32035965],\n",
112
+ " [0.33463634, 0.04858264, 0.32035965, 1. ]])"
113
+ ]
114
+ },
115
+ "execution_count": 79,
116
+ "metadata": {},
117
+ "output_type": "execute_result"
118
+ }
119
+ ],
120
+ "source": [
121
+ "k = RBF(length_scale=.6, length_scale_bounds='fixed')\n",
122
+ "k(x)"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": 80,
128
+ "id": "6a409ae5",
129
+ "metadata": {},
130
+ "outputs": [
131
+ {
132
+ "data": {
133
+ "text/plain": [
134
+ "array([[1.00000000e+00, 2.41799081e-19, 5.26006251e-15, 9.26592960e-10],\n",
135
+ " [2.41799081e-19, 1.00000000e+00, 1.48311381e-16, 1.10443925e-25],\n",
136
+ " [5.26006251e-15, 1.48311381e-16, 1.00000000e+00, 4.04686299e-10],\n",
137
+ " [9.26592960e-10, 1.10443925e-25, 4.04686299e-10, 1.00000000e+00]])"
138
+ ]
139
+ },
140
+ "execution_count": 80,
141
+ "metadata": {},
142
+ "output_type": "execute_result"
143
+ }
144
+ ],
145
+ "source": [
146
+ "k = RBF(length_scale=.6, length_scale_bounds='fixed')\n",
147
+ "k(x_copied)"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "id": "24141432",
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": []
157
+ }
158
+ ],
159
+ "metadata": {
160
+ "kernelspec": {
161
+ "display_name": "Python 3 (ipykernel)",
162
+ "language": "python",
163
+ "name": "python3"
164
+ },
165
+ "language_info": {
166
+ "codemirror_mode": {
167
+ "name": "ipython",
168
+ "version": 3
169
+ },
170
+ "file_extension": ".py",
171
+ "mimetype": "text/x-python",
172
+ "name": "python",
173
+ "nbconvert_exporter": "python",
174
+ "pygments_lexer": "ipython3",
175
+ "version": "3.9.5"
176
+ }
177
+ },
178
+ "nbformat": 4,
179
+ "nbformat_minor": 5
180
+ }
prior-fitting/positional_encodings.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+
7
+ # Protocol for positonal encodings.
8
+ # __init__(d_model, max_len=..[, more optionals])
9
+ # forward(x: (seq_len, bs, d_model)) -> Tensor of shape (*x.shape[:2],d_model) containing pos. embeddings
10
+
11
+
12
+ class NoPositionalEncoding(nn.Module):
13
+ def __init__(self, d_model, max_len=None):
14
+ super(NoPositionalEncoding, self).__init__()
15
+ pass
16
+
17
+ def forward(self, x):
18
+ return x #* math.sqrt(x.shape[-1])
19
+
20
+
21
+ class PositionalEncoding(nn.Module):
22
+ def __init__(self, d_model, max_len=5000):
23
+ super(PositionalEncoding, self).__init__()
24
+ pe = torch.zeros(max_len, d_model)
25
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
26
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
27
+ pe[:, 0::2] = torch.sin(position * div_term)
28
+ pe[:, 1::2] = torch.cos(position * div_term)
29
+ pe = pe.unsqueeze(0).transpose(0, 1)
30
+ self.register_buffer('pe', pe)
31
+
32
+ def forward(self, x):
33
+ x = self.pe[:x.size(0), :] + x # * math.sqrt(x.shape[-1])
34
+ return x
35
+
36
+
37
+ class LearnedPositionalEncoding(nn.Module):
38
+ def __init__(self, d_model, max_len=5000):
39
+ super(LearnedPositionalEncoding, self).__init__()
40
+ self.max_seq_len = max_len
41
+ #self.positional_embeddings = nn.Embedding(max_len, d_model)
42
+ self.positional_embeddings = nn.Parameter(torch.empty(max_len, d_model))
43
+ nn.init.normal_(self.positional_embeddings, mean=0, std=d_model ** -0.5)
44
+
45
+ def forward(self, x):
46
+ seq_len, bs, d_model = x.shape
47
+ assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.'
48
+ pos_emb = self.positional_embeddings[:seq_len]
49
+ return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1])
50
+
51
+
52
+ class PairedScrambledPositionalEncodings(LearnedPositionalEncoding):
53
+ # TODO check whether it is a problem to use the same perm. for full batch
54
+ def forward(self, x):
55
+ seq_len, bs, d_model = x.shape
56
+ assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.'
57
+ assert len(self.positional_embeddings) % 2 == 0, 'Please specify an even max_len.'
58
+
59
+ paired_embs = self.positional_embeddings.view(len(self.positional_embeddings), -1, 2)
60
+ pos_emb = paired_embs[torch.randperm(len(paired_embs))].view(*self.positional_embeddings.shape)[:seq_len]
61
+
62
+ return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1])
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
prior-fitting/presentation/heatmap_bardistribution.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ An example of how to use this:
3
+ x ,y , y_target = priors.fast_gp.get_batch(1,100,num_features, hyperparameters=(1e-4,1.,.6), equidistant_x=True)
4
+ fig, ax = pyplot.subplots(figsize=[10,10])
5
+ plot_model_and_orig_curve(ax, SOME_MODEL, x, y, given_indices[10,40,60])
6
+
7
+ Don't worry it is normal to be slow...
8
+ """
9
+ import matplotlib.patches as patches
10
+ import seaborn as sns
11
+ import torch
12
+
13
+
14
+ def add_rect(ax, coord, height, width, color):
15
+ rect = patches.Rectangle(coord, height, width, linewidth=1, edgecolor='none', facecolor=color)
16
+
17
+ # Add the patch to the Axes
18
+ ax.add_patch(rect)
19
+
20
+
21
+ def heatmap_with_box_sizes(ax, data: torch.Tensor, x_starts, x_ends, y_starts, y_ends,
22
+ palette=sns.color_palette("rocket", as_cmap=True), set_lims=True):
23
+ """
24
+ Beware all x and y arrays should be sorted from small to large and the data will appear in that same order: Small indexes map to lower x/y-axis values.
25
+ """
26
+ if set_lims:
27
+ ax.set_xlim(x_starts[0], x_ends[-1])
28
+ ax.set_ylim(y_starts[0], y_ends[-1])
29
+
30
+ data = (data - data.min()) / (data.max() - data.min())
31
+
32
+ for col_i, (col_start, col_end) in enumerate(zip(x_starts, x_ends)):
33
+ for row_i, (row_start, row_end) in enumerate(zip(y_starts, y_ends)):
34
+ add_rect(ax, (col_start, row_start), col_end - col_start, row_end - row_start,
35
+ palette(data[row_i, col_i].item()))
36
+
37
+
38
+ print(ax.get_ylim())
39
+
40
+
41
+ def plot_bar_distribution(ax, x: torch.Tensor, bar_borders: torch.Tensor, predictions: torch.Tensor, **kwargs):
42
+ x = x.squeeze()
43
+ predictions = predictions.squeeze()
44
+ assert len(x.shape) == 1 and len(predictions.shape) == 2 and len(predictions) == len(x) and len(
45
+ bar_borders.shape) == 1 and len(bar_borders) - 1 == predictions.shape[1]
46
+
47
+ y_starts = bar_borders[:-1]
48
+ y_ends = bar_borders[1:]
49
+
50
+ x, order = x.sort(0)
51
+ print(x.shape, predictions.shape, order.shape)
52
+
53
+ predictions = predictions[order] / (bar_borders[1:] - bar_borders[:-1])
54
+ print(predictions.shape)
55
+
56
+ # assume x is sorted
57
+ x_starts = torch.cat([x[0].unsqueeze(0), (x[1:] + x[:-1]) / 2])
58
+ x_ends = torch.cat([(x[1:] + x[:-1]) / 2, x[-1].unsqueeze(0), ])
59
+
60
+ heatmap_with_box_sizes(ax, predictions.T, x_starts, x_ends, y_starts, y_ends, **kwargs)
61
+
62
+
63
+ def plot_model_w_eval_pos(ax, model, x, y, single_eval_pos, softmax=False, min_max_y=None, **kwargs):
64
+ with torch.no_grad():
65
+ model.eval()
66
+ y_pred = model((x, y), single_eval_pos=single_eval_pos)
67
+ if softmax:
68
+ y_pred = y_pred.softmax(-1)
69
+ if min_max_y:
70
+ lowest_bar = torch.searchsorted(model.criterion.borders, min_max_y[0])
71
+ highest_bar = min(torch.searchsorted(model.criterion.borders, min_max_y[1]), len(model.criterion.borders))
72
+ borders = model.criterion.borders[lowest_bar:highest_bar]
73
+ y_pred = y_pred[..., lowest_bar:highest_bar - 1]
74
+ else:
75
+ borders = model.criterion.borders
76
+ plot_bar_distribution(ax, x[single_eval_pos:], borders, y_pred, **kwargs)
77
+
78
+
79
+ def plot_model_and_orig_curve(ax, model, x, y, given_indices=[0]):
80
+ """
81
+ :param ax: A standard pyplot ax
82
+ :param model: A Transformer Model with `single_eval_pos`
83
+ :param x: A three-dimensional input tensor with x.shape[0]=1 and x.shape[2]=1
84
+ :param y: A two-dimensional tensor with y.shape[1]=0
85
+ :param given_indices: The indexes in y which should be given to the model (the training points)
86
+ :return:
87
+ """
88
+ x_winput = torch.cat([x[given_indices], x], 0)
89
+ y_winput = torch.cat([y[given_indices], y], 0)
90
+
91
+ ax.plot(x.squeeze(), y.squeeze(), color='grey')
92
+ ax.plot(x.squeeze()[given_indices], y.squeeze()[given_indices], 'o', color='black')
93
+ plot_model_w_eval_pos(ax, model, x_winput, y_winput, len(given_indices),
94
+ min_max_y=(y.min() - .3, y.max() + .3), softmax=True,
95
+ palette=sns.cubehelix_palette(start=2, rot=0, dark=0.4, light=1, as_cmap=True))
96
+
97
+
prior-fitting/priors/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from . import fast_gp, gp, ridge, stroke, fast_gp_mix, mlp, omniglot, binarized_regression, pyro
2
+
3
+
4
+
prior-fitting/priors/binarized_regression.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import fast_gp, fast_gp_mix
2
+ from .utils import get_batch_to_dataloader
3
+
4
+ def regression_prior_to_binary(get_batch_function):
5
+
6
+ def binarized_get_batch_function(*args, assert_on=False, **kwargs):
7
+ x, y, target_y = get_batch_function(*args, **kwargs)
8
+ if assert_on:
9
+ assert y is target_y, "y == target_y is assumed by this function"
10
+ y = y.sigmoid().bernoulli()
11
+ return x, y, y
12
+
13
+ return binarized_get_batch_function
14
+
15
+
16
+ Binarized_fast_gp_dataloader = get_batch_to_dataloader(regression_prior_to_binary(fast_gp.get_batch))
17
+ Binarized_fast_gp_dataloader.num_outputs = 1
18
+
19
+
20
+ Binarized_fast_gp_mix_dataloader = get_batch_to_dataloader(regression_prior_to_binary(fast_gp_mix.get_batch))
21
+ Binarized_fast_gp_mix_dataloader.num_outputs = 1
prior-fitting/priors/fast_gp.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ import torch
4
+ from torch import nn
5
+ import gpytorch
6
+
7
+ from .utils import get_batch_to_dataloader
8
+ from utils import default_device
9
+ from .utils import order_by_y, normalize_data, normalize_by_used_features_f, Binarize
10
+
11
+
12
+ # We will use the simplest form of GP model, exact inference
13
+ class ExactGPModel(gpytorch.models.ExactGP):
14
+ def __init__(self, train_x, train_y, likelihood):
15
+ super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
16
+ self.mean_module = gpytorch.means.ConstantMean()
17
+ self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
18
+
19
+ def forward(self, x):
20
+ mean_x = self.mean_module(x)
21
+ covar_x = self.covar_module(x)
22
+ return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
23
+
24
+
25
+ def get_model(x, y, hyperparameters):
26
+ likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))
27
+ model = ExactGPModel(x, y, likelihood)
28
+ model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"]
29
+ model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"]
30
+ model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \
31
+ hyperparameters["lengthscale"]
32
+ return model, likelihood
33
+
34
+
35
+ @torch.no_grad()
36
+ def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None, equidistant_x=False, fix_x=None):
37
+ if isinstance(hyperparameters, (tuple, list)):
38
+ hyperparameters = {"noise": hyperparameters[0], "outputscale": hyperparameters[1], "lengthscale": hyperparameters[2]}
39
+ elif hyperparameters is None:
40
+ hyperparameters = {"noise": .1, "outputscale": .1, "lengthscale": .1}
41
+ with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))):
42
+ start = time.time()
43
+
44
+ assert not (equidistant_x and (fix_x is not None))
45
+ if equidistant_x:
46
+ assert num_features == 1
47
+ x = torch.linspace(0,1.,seq_len).unsqueeze(0).repeat(batch_size,1).unsqueeze(-1).to(device)
48
+ elif fix_x is not None:
49
+ assert fix_x.shape == (seq_len, num_features)
50
+ x = fix_x.unsqueeze(0).repeat(batch_size, 1, 1).to(device)
51
+ else:
52
+ x = torch.rand(batch_size, seq_len, num_features, device=device)
53
+ model, likelihood = get_model(x, torch.Tensor(), hyperparameters)
54
+ model.to(device)
55
+ # trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
56
+ # trained_model.eval()
57
+ with gpytorch.settings.prior_mode(True):
58
+ d = model(x)
59
+ d = likelihood(d)
60
+ sample = d.sample().transpose(0, 1)
61
+ #print(f'took {time.time() - start}')
62
+ return x.transpose(0, 1), sample, sample # x.shape = (T,B,H)
63
+
64
+ # TODO: Reintegrate this code
65
+ # num_features_used = num_features_used_sampler()
66
+ # prior_outputscale = prior_outputscale_sampler()
67
+ # prior_lengthscale = prior_lengthscale_sampler()
68
+ #
69
+ # x, sample = normalize_data(x), normalize_data(sample)
70
+ #
71
+ # if is_binary_classification:
72
+ # sample = (sample > torch.median(sample, dim=0)[0]).float()
73
+ #
74
+ # if normalize_by_used_features:
75
+ # x = normalize_by_used_features_f(x, num_features_used, num_features)
76
+ #
77
+ # # # if is_binary_classification and order_y:
78
+ # # # x, sample = order_by_y(x, sample)
79
+ # #
80
+ # # Append empty features if enabled
81
+ # x = torch.cat([x, torch.zeros((x.shape[0], x.shape[1], num_features - num_features_used), device=device)], -1)
82
+
83
+ DataLoader = get_batch_to_dataloader(get_batch)
84
+ DataLoader.num_outputs = 1
85
+
86
+ def get_model_on_device(x,y,hyperparameters,device):
87
+ model, likelihood = get_model(x, y, hyperparameters)
88
+ model.to(device)
89
+ return model, likelihood
90
+
91
+
92
+ @torch.no_grad()
93
+ def evaluate(x, y, y_non_noisy, use_mse=False, hyperparameters={}, get_model_on_device=get_model_on_device, device=default_device, step_size=1, start_pos=0):
94
+ start_time = time.time()
95
+ losses_after_t = [.0] if start_pos == 0 else []
96
+ all_losses_after_t = []
97
+
98
+ with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))), gpytorch.settings.fast_pred_var(False):
99
+ for t in range(max(start_pos, 1), len(x), step_size):
100
+ loss_sum = 0.
101
+ model, likelihood = get_model_on_device(x[:t].transpose(0, 1), y[:t].transpose(0, 1), hyperparameters, device)
102
+
103
+
104
+ model.eval()
105
+ # print([t.shape for t in model.train_inputs])
106
+ # print(x[:t].transpose(0,1).shape, x[t].unsqueeze(1).shape, y[:t].transpose(0,1).shape)
107
+ f = model(x[t].unsqueeze(1))
108
+ l = likelihood(f)
109
+ means = l.mean.squeeze()
110
+ varis = l.covariance_matrix.squeeze()
111
+ # print(l.variance.squeeze(), l.mean.squeeze(), y[t])
112
+
113
+ assert len(means.shape) == len(varis.shape) == 1
114
+ assert len(means) == len(varis) == x.shape[1]
115
+
116
+ if use_mse:
117
+ c = nn.MSELoss(reduction='none')
118
+ ls = c(means, y[t])
119
+ else:
120
+ ls = -l.log_prob(y[t].unsqueeze(1))
121
+
122
+ losses_after_t.append(ls.mean())
123
+ all_losses_after_t.append(ls.flatten())
124
+ return torch.stack(all_losses_after_t).to('cpu'), torch.tensor(losses_after_t).to('cpu'), time.time() - start_time
125
+
126
+ if __name__ == '__main__':
127
+ hps = (.1,.1,.1)
128
+ for redo_idx in range(1):
129
+ print(
130
+ evaluate(*get_batch(1000, 10, hyperparameters=hps, num_features=10), use_mse=False, hyperparameters=hps))
prior-fitting/priors/fast_gp_mix.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import functools
3
+ import random
4
+ import math
5
+ import traceback
6
+
7
+ import torch
8
+ from torch import nn
9
+ import gpytorch
10
+ from botorch.models import SingleTaskGP
11
+ from botorch.models.gp_regression import MIN_INFERRED_NOISE_LEVEL
12
+ from botorch.fit import fit_gpytorch_model
13
+ from gpytorch.mlls import ExactMarginalLogLikelihood
14
+ from gpytorch.likelihoods import GaussianLikelihood
15
+ from gpytorch.priors.torch_priors import GammaPrior
16
+ from gpytorch.constraints import GreaterThan
17
+
18
+
19
+ from bar_distribution import BarDistribution
20
+ from utils import default_device
21
+ from .utils import get_batch_to_dataloader
22
+ from . import fast_gp
23
+
24
+ def get_model(x, y, hyperparameters: dict, sample=True):
25
+ aug_batch_shape = SingleTaskGP(x,y.unsqueeze(-1))._aug_batch_shape
26
+ noise_prior = GammaPrior(hyperparameters.get('noise_concentration',1.1), hyperparameters.get('noise_rate',0.05))
27
+ noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate
28
+ likelihood = GaussianLikelihood(
29
+ noise_prior=noise_prior,
30
+ batch_shape=aug_batch_shape,
31
+ noise_constraint=GreaterThan(
32
+ MIN_INFERRED_NOISE_LEVEL,
33
+ transform=None,
34
+ initial_value=noise_prior_mode,
35
+ ),
36
+ )
37
+ model = SingleTaskGP(x, y.unsqueeze(-1),
38
+ covar_module=gpytorch.kernels.ScaleKernel(
39
+ gpytorch.kernels.MaternKernel(
40
+ nu=hyperparameters.get('nu',2.5),
41
+ ard_num_dims=x.shape[-1],
42
+ batch_shape=aug_batch_shape,
43
+ lengthscale_prior=gpytorch.priors.GammaPrior(hyperparameters.get('lengthscale_concentration',3.0), hyperparameters.get('lengthscale_rate',6.0)),
44
+ ),
45
+ batch_shape=aug_batch_shape,
46
+ outputscale_prior=gpytorch.priors.GammaPrior(hyperparameters.get('outputscale_concentration',.5), hyperparameters.get('outputscale_rate',0.15)),
47
+ ), likelihood=likelihood)
48
+
49
+ likelihood = model.likelihood
50
+ if sample:
51
+ sampled_model = model.pyro_sample_from_prior()
52
+ return sampled_model, sampled_model.likelihood
53
+ else:
54
+ assert not(hyperparameters.get('sigmoid', False)) and not(hyperparameters.get('y_minmax_norm', False)), "Sigmoid and y_minmax_norm can only be used to sample models..."
55
+ return model, likelihood
56
+
57
+
58
+ @torch.no_grad()
59
+ def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None,
60
+ batch_size_per_gp_sample=None, num_outputs=1,
61
+ fix_to_range=None, equidistant_x=False):
62
+ '''
63
+ This function is very similar to the equivalent in .fast_gp. The only difference is that this function operates over
64
+ a mixture of GP priors.
65
+ :param batch_size:
66
+ :param seq_len:
67
+ :param num_features:
68
+ :param device:
69
+ :param hyperparameters:
70
+ :param for_regression:
71
+ :return:
72
+ '''
73
+ assert num_outputs == 1
74
+ hyperparameters = hyperparameters or {}
75
+ with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))):
76
+ batch_size_per_gp_sample = (batch_size_per_gp_sample or max(batch_size // 10,1))
77
+ assert batch_size % batch_size_per_gp_sample == 0
78
+
79
+ total_num_candidates = batch_size*(2**(fix_to_range is not None))
80
+ num_candidates = batch_size_per_gp_sample * (2**(fix_to_range is not None))
81
+ if equidistant_x:
82
+ assert num_features == 1
83
+ x = torch.linspace(0,1.,seq_len).unsqueeze(0).repeat(total_num_candidates,1).unsqueeze(-1)
84
+ else:
85
+ x = torch.rand(total_num_candidates, seq_len, num_features, device=device)
86
+ samples = []
87
+ for i in range(0,total_num_candidates,num_candidates):
88
+ num_of_dims ~ uniform
89
+ model, likelihood = get_model(x[i:i+num_candidates,...,:num_of_dims], torch.zeros(num_candidates,x.shape[1]), hyperparameters)
90
+ x[i:i + num_candidates, ..., num_of_dims:] = 0
91
+ x[i:i + num_candidates, ..., :num_of_dims] *= total_dims/num_of_dims
92
+ #print(model.covar_module.base_kernel.lengthscale)
93
+ model.to(device)
94
+ # trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
95
+ # trained_model.eval()
96
+ successful_sample = 0
97
+ throwaway_share = 0.
98
+ while successful_sample < 1:
99
+ with gpytorch.settings.prior_mode(True):
100
+ d = model(x[i:i+num_candidates])
101
+ d = likelihood(d)
102
+ sample = d.sample() # bs_per_gp_s x T
103
+ if hyperparameters.get('y_minmax_norm'):
104
+ sample = ((sample - sample.min(1)[0]) / (sample.max(1)[0] - sample.min(1)[0]))
105
+ if hyperparameters.get('sigmoid'):
106
+ sample = sample.sigmoid()
107
+ if fix_to_range is None:
108
+ samples.append(sample.transpose(0, 1))
109
+ successful_sample = True
110
+ continue
111
+ smaller_mask = sample < fix_to_range[0]
112
+ larger_mask = sample >= fix_to_range[1]
113
+ in_range_mask = ~ (smaller_mask | larger_mask).any(1)
114
+ throwaway_share += (~in_range_mask[:batch_size_per_gp_sample]).sum()/batch_size_per_gp_sample
115
+ if in_range_mask.sum() < batch_size_per_gp_sample:
116
+ successful_sample -= 1
117
+ if successful_sample < 100:
118
+ print("Please change hyper-parameters (e.g. decrease outputscale_mean) it"
119
+ "seems like the range is set to tight for your hyper-parameters.")
120
+ continue
121
+
122
+ x[i:i+batch_size_per_gp_sample] = x[i:i+num_candidates][in_range_mask][:batch_size_per_gp_sample]
123
+ sample = sample[in_range_mask][:batch_size_per_gp_sample]
124
+ samples.append(sample.transpose(0, 1))
125
+ successful_sample = True
126
+ if random.random() < .01:
127
+ print('throwaway share', throwaway_share/(batch_size//batch_size_per_gp_sample))
128
+
129
+ #print(f'took {time.time() - start}')
130
+ sample = torch.cat(samples, 1)
131
+ x = x.view(-1,batch_size,seq_len,num_features)[0]
132
+ # TODO think about enabling the line below
133
+ #sample = sample - sample[0, :].unsqueeze(0).expand(*sample.shape)
134
+ x = x.transpose(0,1)
135
+ assert x.shape[:2] == sample.shape[:2]
136
+ target_sample = sample
137
+ return x, sample, target_sample # x.shape = (T,B,H)
138
+
139
+
140
+ class DataLoader(get_batch_to_dataloader(get_batch)):
141
+ num_outputs = 1
142
+ @torch.no_grad()
143
+ def validate(self, model, step_size=1, start_pos=0):
144
+ if isinstance(model.criterion, BarDistribution):
145
+ (x,y), target_y = self.gbm(**self.get_batch_kwargs, fuse_x_y=self.fuse_x_y)
146
+ model.eval()
147
+ losses = []
148
+ for eval_pos in range(start_pos, len(x), step_size):
149
+ logits = model((x,y), single_eval_pos=eval_pos)
150
+ means = model.criterion.mean(logits) # num_evals x batch_size
151
+ mse = nn.MSELoss()
152
+ losses.append(mse(means[0], target_y[eval_pos]))
153
+ model.train()
154
+ return torch.stack(losses)
155
+ else:
156
+ return 123.
157
+
158
+
159
+ @torch.enable_grad()
160
+ def get_fitted_model(x, y, hyperparameters, device):
161
+ # fit the gaussian process
162
+ model, likelihood = get_model(x,y,hyperparameters,sample=False)
163
+ #print(model.covar_module.base_kernel.lengthscale)
164
+ model.to(device)
165
+ mll = ExactMarginalLogLikelihood(likelihood, model)
166
+ model.train()
167
+ fit_gpytorch_model(mll)
168
+ #print(model.covar_module.base_kernel.lengthscale)
169
+ return model, likelihood
170
+
171
+
172
+ evaluate = functools.partial(fast_gp.evaluate, get_model_on_device=get_fitted_model)
173
+
174
+ def get_mcmc_model(x, y, hyperparameters, device, num_samples, warmup_steps):
175
+ from pyro.infer.mcmc import NUTS, MCMC
176
+ import pyro
177
+ x = x.to(device)
178
+ y = y.to(device)
179
+ model, likelihood = get_model(x, y, hyperparameters, sample=False)
180
+ model.to(device)
181
+
182
+
183
+ def pyro_model(x, y):
184
+ sampled_model = model.pyro_sample_from_prior()
185
+ _ = sampled_model.likelihood(sampled_model(x))
186
+ return y
187
+
188
+ nuts_kernel = NUTS(pyro_model, adapt_step_size=True)
189
+ mcmc_run = MCMC(nuts_kernel, num_samples=num_samples, warmup_steps=warmup_steps)
190
+ #print(x.shape)
191
+ mcmc_run.run(x, y)
192
+ model.pyro_load_from_samples(mcmc_run.get_samples())
193
+ model.eval()
194
+ # test_x = torch.linspace(0, 1, 101).unsqueeze(-1)
195
+ # test_y = torch.sin(test_x * (2 * math.pi))
196
+ # expanded_test_x = test_x.unsqueeze(0).repeat(num_samples, 1, 1)
197
+ # output = model(expanded_test_x)
198
+ #print(x.shape)
199
+ return model, likelihood
200
+ # output = model(x[-1].unsqueeze(1).repeat(1, num_samples 1))
201
+ # return output.mean
202
+
203
+
204
+
205
+
206
+ def get_mean_logdensity(dists, x: torch.Tensor, full_range=None):
207
+ means = torch.cat([d.mean.squeeze() for d in dists], 0)
208
+ vars = torch.cat([d.variance.squeeze() for d in dists], 0)
209
+ assert len(means.shape) == 1 and len(vars.shape) == 1
210
+ dist = torch.distributions.Normal(means, vars.sqrt())
211
+ #logprobs = torch.cat([d.log_prob(x) for d in dists], 0)
212
+ logprobs = dist.log_prob(x)
213
+ if full_range is not None:
214
+ used_weight = 1. - (dist.cdf(torch.tensor(full_range[0])) + (1.-dist.cdf(torch.tensor(full_range[1]))))
215
+ if torch.isinf(-torch.log(used_weight)).any() or torch.isinf(torch.log(used_weight)).any():
216
+ print('factor is inf', -torch.log(used_weight))
217
+ logprobs -= torch.log(used_weight)
218
+ assert len(logprobs.shape) == 1
219
+ #print(logprobs)
220
+ return torch.logsumexp(logprobs, 0) - math.log(len(logprobs))
221
+
222
+
223
+ def evaluate_(x, y, y_non_noisy, hyperparameters=None, device=default_device, num_samples=100, warmup_steps=300,
224
+ full_range=None, min_seq_len=0, use_likelihood=False):
225
+ with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))), gpytorch.settings.fast_pred_var(False):
226
+ x = x.to(device)
227
+ y = y.to(device)
228
+ start_time = time.time()
229
+ losses_after_t = [.0] if min_seq_len == 0 else []
230
+ all_losses = []
231
+
232
+ for t in range(max(min_seq_len,1), len(x)):
233
+ #print('Timestep', t)
234
+ loss_sum = 0.
235
+ step_losses = []
236
+ start_step = time.time()
237
+ for b_i in range(x.shape[1]):
238
+ done = 0
239
+ while done < 1:
240
+ try:
241
+ model, likelihood = get_mcmc_model(x[:t, b_i], y[:t, b_i], hyperparameters, device, num_samples=num_samples, warmup_steps=warmup_steps)
242
+ model.eval()
243
+
244
+ with torch.no_grad():
245
+ dists = model(x[t, b_i, :].unsqueeze(
246
+ 0)) # TODO check what is going on here! Does the GP interpret the input wrong?
247
+ if use_likelihood:
248
+ dists = likelihood(dists)
249
+ l = -get_mean_logdensity([dists], y[t, b_i], full_range)
250
+ done = 1
251
+ except Exception as e:
252
+ done -= 1
253
+ print('Trying again..')
254
+ print(traceback.format_exc())
255
+ print(e)
256
+ finally:
257
+ if done < -10:
258
+ print('Too many retries...')
259
+ exit()
260
+
261
+ step_losses.append(l.item())
262
+ #print('loss',l.item())
263
+ print(f'current average loss at step {t} is {sum(step_losses)/len(step_losses)} with {(time.time()-start_step)/len(step_losses)} s per eval.')
264
+ loss_sum += l
265
+
266
+ loss_sum /= x.shape[1]
267
+ all_losses.append(step_losses)
268
+ print(f'loss after step {t} is {loss_sum}')
269
+ losses_after_t.append(loss_sum)
270
+ print(f'losses so far {torch.tensor(losses_after_t)}')
271
+ return torch.tensor(losses_after_t), time.time() - start_time, all_losses
272
+
273
+
274
+
275
+
276
+
277
+ if __name__ == '__main__':
278
+ import argparse
279
+
280
+ parser = argparse.ArgumentParser()
281
+ parser.add_argument('--batch_size', type=int)
282
+ parser.add_argument('--seq_len', type=int)
283
+ parser.add_argument('--min_seq_len', type=int, default=0)
284
+ parser.add_argument('--warmup_steps', type=int)
285
+ parser.add_argument('--num_samples', type=int)
286
+ parser.add_argument('--min_y', type=int)
287
+ parser.add_argument('--max_y', type=int)
288
+ parser.add_argument('--dim', type=int, default=1)
289
+ parser.add_argument('--use_likelihood', default=True, type=bool)
290
+ parser.add_argument('--device', default='cpu')
291
+ parser.add_argument('--outputscale_concentraion', default=2., type=float)
292
+ parser.add_argument('--noise_concentration', default=1.1, type=float)
293
+ parser.add_argument('--noise_rate', default=.05, type=float)
294
+
295
+ args = parser.parse_args()
296
+
297
+ print('min_y:', args.min_y)
298
+ full_range = (None if args.min_y is None else (args.min_y,args.max_y))
299
+
300
+ hps = {'outputscale_concentration': args.outputscale_concentraion, 'noise_concentration': args.noise_concentration,
301
+ 'noise_rate': args.noise_rate, 'fast_computations': (False,False,False)}
302
+ x, y, _ = get_batch(args.batch_size, args.seq_len, args.dim, fix_to_range=full_range, hyperparameters=hps)
303
+ print('RESULT:', evaluate_(x, y, y, device=args.device, warmup_steps=args.warmup_steps,
304
+ num_samples=args.num_samples, full_range=full_range, min_seq_len=args.min_seq_len,
305
+ hyperparameters=hps, use_likelihood=args.use_likelihood))
306
+
307
+
prior-fitting/priors/gp.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import random
3
+
4
+ import numpy as np
5
+ import torch
6
+ from torch import nn
7
+ from sklearn.gaussian_process import GaussianProcessRegressor
8
+ from sklearn.gaussian_process.kernels import RBF, DotProduct, WhiteKernel
9
+ from .utils import get_batch_to_dataloader
10
+
11
+
12
+ length_scale_sampling_gp = .6
13
+
14
+ def get_gp(length_scale=None):
15
+ return GaussianProcessRegressor(
16
+ kernel=RBF(length_scale=length_scale or length_scale_sampling_gp, length_scale_bounds='fixed'),
17
+ random_state=0, optimizer=None)
18
+
19
+
20
+ def get_batch(batch_size, seq_len, num_features, noisy_std=None):
21
+ # m = torch.normal(0.,.1,size=(batch_size,num_features))
22
+ # m2 = torch.rand(batch_size,num_features)
23
+ # b = 0 # torch.rand(batch_size)
24
+ x_t = torch.rand(batch_size, seq_len, num_features)
25
+ # gp_b = TensorGP(kernel=TensorRBF(noisy_std))
26
+ # y_t = gp_b.sample_from_GP_prior(x_t).detach()
27
+
28
+ gpr = get_gp(noisy_std)
29
+ y_t = torch.zeros(batch_size, seq_len)
30
+
31
+ for i in range(len(y_t)):
32
+ y_t[i] += gpr.sample_y(x_t[i], random_state=random.randint(0, 2 ** 32)).squeeze()
33
+ x, y = x_t.transpose(0, 1), y_t.transpose(0, 1)
34
+ # x, _ = torch.sort(x,dim=0)
35
+ return x, y, y
36
+
37
+
38
+ DataLoader = get_batch_to_dataloader(get_batch)
39
+ DataLoader.num_outputs = 1
40
+
41
+ def evaluate(x, y, y_non_noisy, use_mse=False, length_scale=length_scale_sampling_gp):
42
+ start_time = time.time()
43
+ losses_after_t = [.0]
44
+ for t in range(1, len(x)):
45
+ loss_sum = 0.
46
+ for b_i in range(x.shape[1]):
47
+ gpr = get_gp(length_scale).fit(x[:t, b_i], y[:t, b_i])
48
+ means, stds = gpr.predict(x[t, b_i].unsqueeze(0), return_std=True)
49
+ assert len(means) == 1 == len(stds)
50
+ if use_mse:
51
+ c = nn.MSELoss()
52
+ l = c(torch.tensor(means), y[t, b_i].unsqueeze(-1))
53
+ else:
54
+ c = nn.GaussianNLLLoss(full=True)
55
+ l = c(torch.tensor(means), y[t, b_i].unsqueeze(-1),
56
+ var=torch.tensor(stds) ** 2)
57
+ loss_sum += l
58
+
59
+
60
+ losses_after_t.append(loss_sum / x.shape[1])
61
+
62
+ return torch.tensor(losses_after_t), time.time()-start_time
63
+
64
+ if __name__ == '__main__':
65
+ ls = .1
66
+ for alpha in set([ls, ls * 1.1, ls * .9]):
67
+ print(alpha)
68
+ for redo_idx in range(1):
69
+ print(
70
+ evaluate(*get_batch(1000, 10, noisy_std=ls, num_features=10), use_mse=False, length_scale=alpha))
prior-fitting/priors/mlp.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ import numpy as np
7
+
8
+ from utils import default_device
9
+ from .utils import get_batch_to_dataloader
10
+ from .utils import order_by_y, normalize_data, normalize_by_used_features_f, Binarize
11
+ from .utils import trunc_norm_sampler_f, beta_sampler_f, gamma_sampler_f, uniform_sampler_f, zipf_sampler_f, scaled_beta_sampler_f, uniform_int_sampler_f
12
+
13
+
14
+ def canonical_pre_processing(x, canonical_args):
15
+ assert x.shape[2] == len(canonical_args)
16
+ ranges = [torch.arange(num_classes).float() if num_classes is not None else None for num_classes in canonical_args]
17
+ for feature_dim, rang in enumerate(ranges):
18
+ if rang is not None:
19
+ x[:, :, feature_dim] = (x[:, :, feature_dim] - rang.mean()) / rang.std()
20
+ return x
21
+
22
+
23
+ DEFAULT_NUM_LAYERS = 2
24
+ DEFAULT_HIDDEN_DIM = 100
25
+ DEFAULT_ACTIVATION_MODULE = torch.nn.ReLU
26
+ DEFAULT_INIT_STD = .1
27
+ DEFAULT_HIDDEN_NOISE_STD = .1
28
+ DEFAULT_FIXED_DROPOUT = 0.
29
+ DEFAULT_IS_BINARY_CLASSIFICATION = False
30
+
31
+
32
+ class GaussianNoise(nn.Module):
33
+ def __init__(self, std):
34
+ super().__init__()
35
+ self.std = std
36
+
37
+ def forward(self, x):
38
+ return x + torch.normal(torch.zeros_like(x), self.std)
39
+
40
+
41
+ def causes_sampler_f(num_causes_sampler):
42
+ num_causes = num_causes_sampler()
43
+ means = np.random.normal(0, 1, (num_causes))
44
+ std = np.abs(np.random.normal(0, 1, (num_causes)) * means)
45
+ return means, std
46
+
47
+ def categorical_features_sampler(max_features):
48
+ features = []
49
+ ordinal = []
50
+ num_categorical_features_sampler = scaled_beta_sampler_f(0.5, .8, max_features, 0)
51
+ is_ordinal_sampler = lambda : random.choice([True, False])
52
+ classes_per_feature_sampler = scaled_beta_sampler_f(0.1, 2.0, 10, 1)
53
+ classes_per_feature_sampler_ordinal = scaled_beta_sampler_f(0.1, 2.0, 200, 1)
54
+ for i in range(0, num_categorical_features_sampler()):
55
+ ordinal_s = is_ordinal_sampler()
56
+ ordinal.append(ordinal_s)
57
+ classes = classes_per_feature_sampler_ordinal() if ordinal_s else classes_per_feature_sampler()
58
+ features.append(np.random.rand(classes))
59
+ return features, ordinal
60
+
61
+
62
+ def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=(DEFAULT_NUM_LAYERS, DEFAULT_HIDDEN_DIM, DEFAULT_ACTIVATION_MODULE, DEFAULT_INIT_STD, DEFAULT_HIDDEN_NOISE_STD, DEFAULT_FIXED_DROPOUT, DEFAULT_IS_BINARY_CLASSIFICATION),
63
+ batch_size_per_gp_sample=None, num_outputs=1, canonical_args=None, sampling='normal'):
64
+ assert num_outputs == 1
65
+ num_layers_sampler, hidden_dim_sampler, activation_module, init_std_sampler, noise_std_sampler, dropout_prob_sampler, is_binary_classification, num_features_used_sampler, causes_sampler, is_causal, pre_sample_causes, pre_sample_weights, y_is_effect, order_y, normalize_by_used_features, categorical_features_sampler, nan_prob = hyperparameters
66
+
67
+ # if is_binary_classification:
68
+ # sample_batch_size = 100*batch_size
69
+ # else:
70
+ sample_batch_size = batch_size
71
+
72
+ # if canonical_args is not None:
73
+ # assert len(canonical_args) == num_causes
74
+ # # should be list of [None, 2, 4] meaning scalar parameter, 2 classes, 4 classes
75
+ #
76
+ # for feature_idx, num_classes in enumerate(canonical_args):
77
+ # if num_classes is not None:
78
+ # causes[:,:,feature_idx] = torch.randint(num_classes, (seq_len, sample_batch_size))
79
+ #
80
+ # causes = canonical_pre_processing(causes, canonical_args)
81
+
82
+ batch_size_per_gp_sample = batch_size_per_gp_sample or sample_batch_size // 8
83
+ assert sample_batch_size % batch_size_per_gp_sample == 0, 'Please choose a batch_size divisible by batch_size_per_gp_sample.'
84
+ num_models = sample_batch_size // batch_size_per_gp_sample
85
+ # standard kaiming uniform init currently...
86
+
87
+ def get_model():
88
+ class MLP(torch.nn.Module):
89
+ def __init__(self):
90
+ super(MLP, self).__init__()
91
+
92
+ self.dropout_prob = dropout_prob_sampler()
93
+ self.noise_std = noise_std_sampler()
94
+ self.init_std = init_std_sampler()
95
+ self.num_features_used = num_features_used_sampler()
96
+ self.categorical_features, self.categorical_features_is_ordinal = categorical_features_sampler(self.num_features_used)
97
+ if is_causal:
98
+ self.causes = causes_sampler() if is_causal else self.num_features_used
99
+ self.causes = (torch.tensor(self.causes[0], device=device).unsqueeze(0).unsqueeze(0).tile((seq_len,1,1)), torch.tensor(self.causes[1], device=device).unsqueeze(0).unsqueeze(0).tile((seq_len,1,1)))
100
+ self.num_causes = self.causes[0].shape[2]
101
+ else:
102
+ self.num_causes = self.num_features_used
103
+ self.num_layers = num_layers_sampler()
104
+ self.hidden_dim = hidden_dim_sampler()
105
+
106
+ if is_causal:
107
+ self.hidden_dim = max(self.hidden_dim, 2 * self.num_features_used+1)
108
+
109
+ #print('cat', self.categorical_features, self.categorical_features_is_ordinal, self.num_features_used)
110
+
111
+ assert(self.num_layers > 2)
112
+
113
+ self.layers = [nn.Linear(self.num_causes, self.hidden_dim, device=device)]
114
+ self.layers += [module for layer_idx in range(self.num_layers-1) for module in [
115
+ nn.Sequential(*[
116
+ activation_module()
117
+ , nn.Linear(self.hidden_dim, num_outputs if layer_idx == self.num_layers - 2 else self.hidden_dim, device=device)
118
+ , GaussianNoise(torch.abs(torch.normal(torch.zeros((num_outputs if layer_idx == self.num_layers - 2 else self.hidden_dim),device=device), self.noise_std))) if pre_sample_weights else GaussianNoise(self.noise_std)
119
+ ])
120
+ ]]
121
+ self.layers = nn.Sequential(*self.layers)
122
+
123
+ self.binarizer = Binarize() if is_binary_classification else lambda x : x
124
+
125
+ # Initialize Model parameters
126
+ for i, p in enumerate(self.layers.parameters()):
127
+ dropout_prob = self.dropout_prob if i > 0 else 0.0
128
+ nn.init.normal_(p, std=self.init_std / (1. - dropout_prob))
129
+ with torch.no_grad():
130
+ p *= torch.bernoulli(torch.zeros_like(p) + 1. - dropout_prob)
131
+
132
+ def forward(self):
133
+ if sampling == 'normal':
134
+ if is_causal and pre_sample_causes:
135
+ causes = torch.normal(self.causes[0], self.causes[1].abs()).float()
136
+ else:
137
+ causes = torch.normal(0., 1., (seq_len, 1, self.num_causes), device=device).float()
138
+ elif sampling == 'uniform':
139
+ causes = torch.rand((seq_len, 1, self.num_causes), device=device)
140
+ else:
141
+ raise ValueError(f'Sampling is set to invalid setting: {sampling}.')
142
+
143
+ outputs = [causes]
144
+ for layer in self.layers:
145
+ outputs.append(layer(outputs[-1]))
146
+ outputs = outputs[2:]
147
+
148
+ if is_causal:
149
+ outputs_flat = torch.cat(outputs, -1)
150
+ random_perm = torch.randperm(outputs_flat.shape[-1]-1, device=device)
151
+ random_idx_y = [-1] if y_is_effect else random_perm[0:num_outputs]
152
+ y = outputs_flat[:, :, random_idx_y]
153
+
154
+ random_idx = random_perm[num_outputs:num_outputs + self.num_features_used]
155
+ x = outputs_flat[:, :, random_idx]
156
+ else:
157
+ y = outputs[-1][:, :, :]
158
+ x = causes
159
+
160
+ if len(self.categorical_features) > 0:
161
+ random_perm = torch.randperm(x.shape[-1], device=device)
162
+ for i, (categorical_feature, is_ordinal) in enumerate(zip(self.categorical_features, self.categorical_features_is_ordinal)):
163
+ idx = random_perm[i]
164
+ temp = normalize_data(x[:, :, idx])
165
+ if is_ordinal:
166
+ x[:, :, idx] = (temp > (torch.tensor(categorical_feature, device=device, dtype=torch.float32).unsqueeze(-1).unsqueeze(-1) - 0.5)).sum(axis=0)
167
+ else:
168
+ x[:, :, idx] = (temp > (torch.tensor(categorical_feature, device=device,
169
+ dtype=torch.float32).unsqueeze(-1).unsqueeze(-1) - 0.5)).sum(
170
+ axis=0) * (127 * len(categorical_feature) + 1) % len(categorical_feature)
171
+
172
+
173
+ # if nan_prob > 0:
174
+ # nan_value = random.choice([-999,-1,0, -10])
175
+ # x[torch.rand(x.shape, device=device) > (1-nan_prob)] = nan_value
176
+
177
+ x, y = normalize_data(x), normalize_data(y)
178
+
179
+ # Binarize output if enabled
180
+ y = self.binarizer(y)
181
+
182
+ if normalize_by_used_features:
183
+ x = normalize_by_used_features_f(x, self.num_features_used, num_features)
184
+
185
+ if is_binary_classification and order_y:
186
+ x, y = order_by_y(x,y)
187
+
188
+ # Append empty features if enabled
189
+ x = torch.cat([x, torch.zeros((x.shape[0], x.shape[1], num_features - self.num_features_used), device=device)], -1)
190
+
191
+ return x, y
192
+
193
+ return MLP()
194
+
195
+ models = [get_model() for _ in range(num_models)]
196
+
197
+ sample = sum([[model() for _ in range(0,batch_size_per_gp_sample)] for model in models],[])
198
+
199
+ x, y = zip(*sample)
200
+ y = torch.cat(y, 1).squeeze(-1).detach()
201
+ x = torch.cat(x, 1).detach()
202
+
203
+ return x, y, y
204
+
205
+
206
+ DataLoader = get_batch_to_dataloader(get_batch)
207
+ DataLoader.num_outputs = 1
208
+
prior-fitting/priors/omniglot.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from torch.utils import data
5
+ from torchvision import transforms
6
+ import numpy as np
7
+
8
+ from datasets import omniglotNshot
9
+ import utils
10
+
11
+
12
+ def _compute_maxtranslations(single_image_tensor, dim, background):
13
+ assert len(single_image_tensor.shape) == 2
14
+ content_rows = ((single_image_tensor == background).all(dim=1 - dim) == False).nonzero()
15
+ begin, end = content_rows[0], content_rows[-1]
16
+ return torch.cat([-begin, single_image_tensor.shape[dim] - end - 1]).cpu().tolist()
17
+
18
+
19
+ def compute_maxtranslations_x_y(single_image_tensor, background):
20
+ return _compute_maxtranslations(single_image_tensor, 1, background), _compute_maxtranslations(single_image_tensor,
21
+ 0, background)
22
+
23
+
24
+ def translate(img, trans_x, trans_y):
25
+ return transforms.functional.affine(img.unsqueeze(0), angle=0.0, translate=[trans_x, trans_y], scale=1.0,
26
+ interpolation=transforms.InterpolationMode.NEAREST, shear=[0.0, 0.0],
27
+ fill=0.).squeeze(0)
28
+
29
+ def translate_omniglot(image_tensor, background=0.):
30
+ flat_image_tensor = image_tensor.view(-1, *image_tensor.shape[-2:])
31
+ for i, image in enumerate(flat_image_tensor):
32
+ max_x, max_y = compute_maxtranslations_x_y(image, background)
33
+ flat_image_tensor[i] = translate(image, random.randint(*max_x), random.randint(*max_y))
34
+ return flat_image_tensor.view(*image_tensor.shape)
35
+
36
+
37
+ class DataLoader(data.DataLoader):
38
+ def __init__(self, num_steps, batch_size, seq_len, num_features, num_outputs, num_classes_used=1200, fuse_x_y=False, train=True, translations=True, jonas_style=False):
39
+ # TODO position before last is predictable by counting..
40
+ utils.set_locals_in_self(locals())
41
+ assert not fuse_x_y, 'So far don\' support fusing.'
42
+ imgsz = math.isqrt(num_features)
43
+ assert imgsz * imgsz == num_features
44
+ assert ((seq_len-1) // num_outputs) * num_outputs == seq_len - 1
45
+ if jonas_style:
46
+ self.d = omniglotNshot.OmniglotNShotJonas('omniglot', batchsz=batch_size, n_way=num_outputs,
47
+ k_shot=((seq_len - 1) // num_outputs),
48
+ k_query=1, imgsz=imgsz)
49
+ else:
50
+ self.d = omniglotNshot.OmniglotNShot('omniglot', batchsz=batch_size, n_way=num_outputs,
51
+ k_shot=((seq_len - 1) // num_outputs),
52
+ k_query=1, imgsz=imgsz, num_train_classes_used=num_classes_used)
53
+
54
+
55
+ def __len__(self):
56
+ return self.num_steps
57
+
58
+ def __iter__(self):
59
+ # Eval at pos
60
+ def t(x, y, x_q, y_q):
61
+ x = np.concatenate([x,x_q[:,:1]], 1)
62
+ y = np.concatenate([y,y_q[:,:1]], 1)
63
+ y = torch.from_numpy(y).transpose(0, 1)
64
+ target_y = y.clone().detach()
65
+ target_y[:-1] = -100
66
+ x = torch.from_numpy(x)
67
+ if self.translations and self.train:
68
+ x = translate_omniglot(x)
69
+ image_tensor = x.view(*x.shape[:2], -1).transpose(0, 1), y
70
+ return image_tensor, target_y
71
+
72
+ return (t(*self.d.next(mode='train' if self.train else 'test')) for _ in range(self.num_steps))
73
+
74
+ @torch.no_grad()
75
+ def validate(self, finetuned_model, eval_pos=-1):
76
+ finetuned_model.eval()
77
+ device = next(iter(finetuned_model.parameters())).device
78
+
79
+ if not hasattr(self, 't_dl'):
80
+ self.t_dl = DataLoader(num_steps=self.num_steps, batch_size=self.batch_size, seq_len=self.seq_len,
81
+ num_features=self.num_features, num_outputs=self.num_outputs, fuse_x_y=self.fuse_x_y,
82
+ train=False)
83
+
84
+ ps = []
85
+ ys = []
86
+ for x,y in self.t_dl:
87
+ p = finetuned_model(tuple(e.to(device) for e in x), single_eval_pos=eval_pos)
88
+ ps.append(p)
89
+ ys.append(y)
90
+
91
+ ps = torch.cat(ps,1)
92
+ ys = torch.cat(ys,1)
93
+
94
+ def acc(ps,ys):
95
+ return (ps.argmax(-1)==ys.to(ps.device)).float().mean()
96
+
97
+ a = acc(ps[eval_pos], ys[eval_pos]).cpu()
98
+ return a
prior-fitting/priors/prior.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import DataLoader
2
+
3
+
4
+ class PriorDataLoader(DataLoader):
5
+ pass
6
+ # init accepts num_steps as first argument
7
+
8
+ # has two attributes set on class or object level:
9
+ # num_features: int and
10
+ # num_outputs: int
11
+ # fuse_x_y: bool
12
+ # Optional: validate function that accepts a transformer model
prior-fitting/priors/pyro.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from utils import default_device
7
+ from .utils import get_batch_to_dataloader
8
+
9
+
10
+ def get_batch(batch_size, seq_len, batch_size_per_gp_sample=None, **config):
11
+ batch_size_per_gp_sample = batch_size_per_gp_sample or batch_size // 16
12
+ assert batch_size % batch_size_per_gp_sample == 0, 'Please choose a batch_size divisible by batch_size_per_gp_sample.'
13
+ num_models = batch_size // batch_size_per_gp_sample
14
+ # standard kaiming uniform init currently...
15
+
16
+ models = [config['model']() for _ in range(num_models)]
17
+
18
+ sample = sum([[model(seq_len=seq_len) for _ in range(0,batch_size_per_gp_sample)] for model in models],[])
19
+
20
+ def normalize_data(data):
21
+ mean = data.mean(0)
22
+ std = data.std(0) + .000001
23
+ eval_xs = (data - mean) / std
24
+
25
+ return eval_xs
26
+
27
+ x, y = zip(*sample)
28
+
29
+ y = torch.stack(y, 1).squeeze(-1).detach()
30
+ x = torch.stack(x, 1).detach()
31
+
32
+ x, y = normalize_data(x), y
33
+
34
+ return x, y, y
35
+
36
+
37
+ DataLoader = get_batch_to_dataloader(get_batch)
38
+ DataLoader.num_outputs = 1
39
+
prior-fitting/priors/ridge.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import time
3
+
4
+ import numpy as np
5
+ import torch
6
+ from torch import nn
7
+ from sklearn.linear_model import Ridge
8
+ from .utils import get_batch_to_dataloader
9
+
10
+ def get_batch(batch_size, seq_len, num_features, noisy_std = .1):
11
+ m = torch.normal(0., .1, size=(batch_size,num_features))
12
+ b = 0 # torch.rand(batch_size)
13
+ x = torch.rand(seq_len, batch_size,num_features)
14
+ y_non_noisy = torch.einsum('bf,tbf->tb',m,x)
15
+ y = y_non_noisy + torch.normal(torch.zeros_like(y_non_noisy),noisy_std) # noisy_std is alpha
16
+ return x, y, y_non_noisy
17
+
18
+ DataLoader = get_batch_to_dataloader(get_batch)
19
+ DataLoader.num_outputs = 1
20
+
21
+
22
+ def evaluate(x,y,y_non_noisy, alpha=0.):
23
+ start_time = time.time()
24
+ losses_after_t = [.0]
25
+ for t in range(1,len(x)):
26
+ loss_sum = 0.
27
+ for b_i in range(x.shape[1]):
28
+ clf = Ridge(alpha=alpha)
29
+ clf.fit(x[:t,b_i],y[:t,b_i])
30
+ y_ = clf.predict(x[t,b_i].unsqueeze(0))
31
+ l = nn.MSELoss()(y_non_noisy[t,b_i].unsqueeze(0),torch.tensor(y_))
32
+ loss_sum += l
33
+ losses_after_t.append(loss_sum/x.shape[1])
34
+ return torch.tensor(losses_after_t), time.time()-start_time
35
+
36
+ if __name__ == '__main__':
37
+ for alpha in [.001,.01,.5,1.]:
38
+ print(alpha, evaluate(*get_batch(1000,10,noisy_std=.01),alpha=alpha))
prior-fitting/priors/stroke.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw, ImageFilter
2
+ import random
3
+ import math
4
+
5
+ import torch
6
+ import numpy as np
7
+ from .utils import get_batch_to_dataloader
8
+
9
+ def mnist_prior(num_classes=2, size=28, min_max_strokes=(1,3), min_max_len=(5/28,20/28), min_max_start=(2/28,25/28),
10
+ min_max_width=(1/28,4/28), max_offset=4/28, max_target_offset=2/28):
11
+ classes = []
12
+ for i in range(num_classes):
13
+ num_strokes = random.randint(*min_max_strokes)
14
+ len_strokes = [random.randint(int(size * min_max_len[0]), int(size * min_max_len[1])) for i in range(num_strokes)]
15
+ stroke_start_points = [
16
+ (random.randint(int(size * min_max_start[0]), int(size * min_max_start[1])), random.randint(int(size * min_max_start[0]), int(size * min_max_start[1]))) for i in
17
+ range(num_strokes)]
18
+ stroke_directions = []
19
+ # i = Image.fromarray(np.zeros((28,28),dtype=np.uint8))
20
+ # draw = ImageDraw.Draw(i)
21
+ for i in range(num_strokes):
22
+ sp, length = stroke_start_points[i], len_strokes[i]
23
+ counter = 0
24
+ while True:
25
+ if counter % 3 == 0:
26
+ length = random.randint(int(size * min_max_len[0]), int(size * min_max_len[1]))
27
+ sp = (
28
+ random.randint(int(size * min_max_start[0]), int(size * min_max_start[1])), random.randint(int(size * min_max_start[0]), int(size * min_max_start[1])))
29
+ stroke_start_points[i], len_strokes[i] = sp, length
30
+ radians = random.random() * 2 * math.pi
31
+ x_vel = math.cos(radians) * length
32
+ y_vel = math.sin(radians) * length
33
+ new_p = (sp[0] + x_vel, sp[1] + y_vel)
34
+ # print(math.degrees(radians),sp,new_p)
35
+ if not any(n > size - 1 or n < 0 for n in new_p):
36
+ break
37
+ counter += 1
38
+ stroke_directions.append(radians)
39
+ # print([round(x) for x in sp+new_p])
40
+ # draw.line([round(x) for x in sp+new_p], fill=128, width=3)
41
+ classes.append((len_strokes, stroke_start_points, stroke_directions))
42
+
43
+ generator_functions = []
44
+ for c in classes:
45
+ def g(c=c):
46
+ len_strokes, stroke_start_points, stroke_directions = c
47
+ i = Image.fromarray(np.zeros((size, size), dtype=np.uint8))
48
+ draw = ImageDraw.Draw(i)
49
+ width = random.randint(int(size * min_max_width[0]), int(size * min_max_width[1]))
50
+ offset = random.randint(int(-size * max_offset), int(size * max_offset)), random.randint(int(- size * max_offset), int(size * max_offset))
51
+ for sp, length, radians in zip(stroke_start_points, len_strokes, stroke_directions):
52
+ sp = (sp[0] + offset[0], sp[1] + offset[1])
53
+ x_vel = math.cos(radians) * length + random.randint(int(-size * max_target_offset), int(size * max_target_offset))
54
+ y_vel = math.sin(radians) * length + random.randint(int(-size * max_target_offset), int(size * max_target_offset))
55
+ new_p = (sp[0] + x_vel, sp[1] + y_vel)
56
+ stroke_directions.append(radians)
57
+ draw.line([round(x) for x in sp + new_p], fill=128, width=width)
58
+ a_i = np.array(i)
59
+ a_i[a_i == 128] = np.random.randint(200, 255, size=a_i.shape)[a_i == 128]
60
+ return Image.fromarray(a_i).filter(ImageFilter.GaussianBlur(.2))
61
+
62
+ generator_functions.append(g)
63
+ return generator_functions
64
+
65
+
66
+ # g1,g2 = mnist_prior(2)
67
+
68
+ # for i in [g1() for _ in range(10)]:
69
+ # display(i.resize((200,200)))
70
+
71
+ from torchvision.transforms import ToTensor, ToPILImage
72
+
73
+
74
+ def normalize(x):
75
+ return (x-x.mean())/(x.std()+.000001)
76
+
77
+ from os import path, listdir
78
+ import random
79
+
80
+ def get_batch(batch_size, seq_len, num_features=None, noisy_std=None, only_train_for_last_idx=False, normalize_x=False, num_outputs=2, use_saved_from=None, **kwargs): # num_features = 28*28=784
81
+ if use_saved_from is not None:
82
+ directory = path.join(use_saved_from, f'len_{seq_len}_out_{num_outputs}_features_{num_features}_bs_{batch_size}')
83
+ filename = random.choice(listdir(directory))
84
+ return torch.load(path.join(directory,filename))
85
+
86
+ size = math.isqrt(num_features)
87
+ assert size * size == num_features, 'num_features needs to be the square of an integer.'
88
+ if only_train_for_last_idx:
89
+ assert (seq_len-1) % num_outputs == 0
90
+
91
+ # assert seq_len % 2 == 0, "assert seq_len % 2 == 0"
92
+ batch = []
93
+ y = []
94
+ target_y = []
95
+ for b_i in range(batch_size):
96
+ gs = mnist_prior(num_outputs, size, **kwargs)
97
+ if only_train_for_last_idx:
98
+ generators = [i for i in range(len(gs)) for _ in range((seq_len-1) // num_outputs)]
99
+ random.shuffle(generators)
100
+ generators += [random.randint(0, len(gs) - 1)]
101
+ target = [-100 for _ in generators]
102
+ target[-1] = generators[-1]
103
+ else:
104
+ generators = [random.randint(0, len(gs) - 1) for _ in range(seq_len)]
105
+ target = generators
106
+ normalize_or_not = lambda x: normalize(x) if normalize_x else x
107
+ s = torch.cat([normalize_or_not(ToTensor()(gs[f_i]())) for f_i in generators], 0)
108
+ batch.append(s)
109
+ y.append(torch.tensor(generators))
110
+ target_y.append(torch.tensor(target))
111
+ x = torch.stack(batch, 1).view(seq_len, batch_size, -1)
112
+ y = torch.stack(y, 1)
113
+ target_y = torch.stack(target_y, 1)
114
+ return x,y,target_y
115
+
116
+ DataLoader = get_batch_to_dataloader(get_batch)
117
+ DataLoader.num_outputs = 2
118
+
119
+ if __name__ == '__main__':
120
+ g1, g2 = mnist_prior(2, size=3)
121
+
122
+ # for i in range(10):
123
+ # print(PILToTensor()(g1()))
124
+ # display(ToPILImage()(PILToTensor()(g1())).resize((200,200)))
125
+ # display(g2().resize((200,200)))
126
+
127
+ size = 10
128
+ x, y = get_batch(1, 10, num_features=size * size)
129
+
130
+ x_ = x[..., :-1].squeeze(1)
131
+ last_y = x[..., -1].squeeze(1)
132
+ y = y.squeeze(1)
133
+
134
+ # print(y)
135
+
136
+ for i, y_, last_y_, x__ in zip(x_, y, last_y, x.squeeze(1)):
137
+ # print(y_)
138
+ # print(i.shape)
139
+ # print(x__)
140
+ img = ToPILImage()(i.view(size, size))
141
+ # display(img.resize((200,200)))
142
+
143
+ print(y, last_y)
prior-fitting/priors/utils.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import torch
4
+
5
+ from utils import set_locals_in_self
6
+ from itertools import repeat
7
+ from .prior import PriorDataLoader
8
+ from torch import nn
9
+ import numpy as np
10
+ import matplotlib.pyplot as plt
11
+ import matplotlib.gridspec as gridspec
12
+ import scipy.stats as stats
13
+
14
+ def get_batch_to_dataloader(get_batch_method_):
15
+ class DL(PriorDataLoader):
16
+ get_batch_method = get_batch_method_
17
+
18
+ # Caution, you might need to set self.num_features manually if it is not part of the args.
19
+ def __init__(self, num_steps, fuse_x_y=False, **get_batch_kwargs):
20
+ set_locals_in_self(locals())
21
+ # The stuff outside the or is set as class attribute before instantiation.
22
+ self.num_features = get_batch_kwargs.get('num_features') or self.num_features
23
+ self.num_outputs = get_batch_kwargs.get('num_outputs') or self.num_outputs
24
+ print('DataLoader.__dict__', self.__dict__)
25
+
26
+ @staticmethod
27
+ def gbm(*args, fuse_x_y=True, **kwargs):
28
+ x, y, target_y = get_batch_method_(*args, **kwargs)
29
+ if fuse_x_y:
30
+ return torch.cat([x, torch.cat([torch.zeros_like(y[:1]), y[:-1]], 0).unsqueeze(-1).float()],
31
+ -1), target_y
32
+ else:
33
+ return (x, y), target_y
34
+
35
+ def __len__(self):
36
+ return self.num_steps
37
+
38
+ def __iter__(self):
39
+ return iter(self.gbm(**self.get_batch_kwargs, fuse_x_y=self.fuse_x_y) for _ in range(self.num_steps))
40
+
41
+
42
+ return DL
43
+
44
+
45
+ def plot_features(data, targets):
46
+ if torch.is_tensor(data):
47
+ data = data.detach().cpu().numpy()
48
+ targets = targets.detach().cpu().numpy()
49
+ fig2 = plt.figure(constrained_layout=True, figsize=(12, 12))
50
+ spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
51
+ for d in range(0, data.shape[1]):
52
+ for d2 in range(0, data.shape[1]):
53
+ sub_ax = fig2.add_subplot(spec2[d, d2])
54
+ sub_ax.scatter(data[:, d], data[:, d2],
55
+ c=targets[:])
56
+
57
+
58
+ def plot_prior(prior):
59
+ s = np.array([prior() for _ in range(0, 10000)])
60
+ count, bins, ignored = plt.hist(s, 50, density=True)
61
+ print(s.min())
62
+ plt.show()
63
+
64
+ trunc_norm_sampler_f = lambda mu, sigma : lambda: stats.truncnorm((0 - mu) / sigma, (1 - mu) / sigma, loc=mu, scale=sigma).rvs(1)[0]
65
+ beta_sampler_f = lambda a, b : lambda : np.random.beta(a, b)
66
+ gamma_sampler_f = lambda a, b : lambda : np.random.gamma(a, b)
67
+ uniform_sampler_f = lambda a, b : lambda : np.random.uniform(a, b)
68
+ uniform_int_sampler_f = lambda a, b : lambda : np.random.randint(a, b)
69
+ zipf_sampler_f = lambda a, b, c : lambda : min(b + np.random.zipf(a), c)
70
+ scaled_beta_sampler_f = lambda a, b, scale, minimum : lambda : minimum + round(beta_sampler_f(a, b)() * (scale - minimum + 1) - 0.5)
71
+
72
+
73
+ def normalize_data(data):
74
+ mean = data.mean(0)
75
+ std = data.std(0) + .000001
76
+ data = (data - mean) / std
77
+
78
+ return data
79
+
80
+
81
+ def normalize_by_used_features_f(x, num_features_used, num_features):
82
+ return x / (num_features_used / num_features)
83
+
84
+
85
+ class Binarize(nn.Module):
86
+ def __init__(self, p=0.5):
87
+ super().__init__()
88
+ self.p = p
89
+
90
+ def forward(self, x):
91
+ return (x > torch.median(x)).float()
92
+
93
+
94
+ def order_by_y(x, y):
95
+ order = torch.argsort(y if random.randint(0, 1) else -y, dim=0)[:, 0, 0]
96
+ order = order.reshape(2, -1).transpose(0, 1).reshape(-1)#.reshape(seq_len)
97
+ x = x[order] # .reshape(2, -1).transpose(0, 1).reshape(-1).flip([0]).reshape(seq_len, 1, -1)
98
+ y = y[order] # .reshape(2, -1).transpose(0, 1).reshape(-1).reshape(seq_len, 1, -1)
99
+
100
+ return x, y
101
+
102
+
prior-fitting/requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Recommend to use python >= 3.9
2
+ gpytorch==1.5.0
3
+ pyro-ppl==1.7.0
4
+ torch==1.9.0
5
+ scikit-learn==0.24.2
6
+ pyyaml==5.4.1
7
+ blitz-bayesian-pytorch==0.2.7
8
+ seaborn==0.11.2
9
+ xgboost==1.4.0
10
+ tqdm==4.62.1
11
+ numpy==1.21.2
12
+ openml==0.12.2
13
+ catboost==0.26.1
prior-fitting/tabular.py ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from catboost import CatBoostClassifier, Pool
2
+ from sklearn.model_selection import GridSearchCV
3
+ from sklearn.model_selection import KFold
4
+ from sklearn.model_selection import ParameterGrid
5
+
6
+ import pyro
7
+ import pyro.distributions as dist
8
+ from pyro.nn import PyroModule, PyroSample
9
+ from pyro.infer.autoguide import AutoDiagonalNormal
10
+ from pyro.infer import SVI, Trace_ELBO, Predictive, MCMC, NUTS
11
+ from pytorch_tabnet.tab_model import TabNetClassifier, TabNetRegressor
12
+ from sklearn.metrics import accuracy_score, roc_auc_score
13
+ import argparse
14
+ import itertools
15
+
16
+ from train import train, get_weighted_single_eval_pos_sampler, Losses
17
+ import priors
18
+ import encoders
19
+ from sklearn import preprocessing
20
+
21
+ from sklearn.base import BaseEstimator, ClassifierMixin
22
+
23
+ from torch import nn
24
+
25
+ from datasets import *
26
+ import xgboost as xgb
27
+ import matplotlib.pyplot as plt
28
+ import numpy as np
29
+
30
+ import torch
31
+ from sklearn import neighbors, datasets
32
+ from sklearn.gaussian_process import GaussianProcessClassifier
33
+ from sklearn.gaussian_process.kernels import RBF
34
+
35
+ from priors.utils import trunc_norm_sampler_f, beta_sampler_f, gamma_sampler_f, uniform_sampler_f, zipf_sampler_f, scaled_beta_sampler_f, uniform_int_sampler_f
36
+
37
+ from tqdm import tqdm
38
+ import time
39
+ import random
40
+
41
+ import os
42
+
43
+ CV = 5
44
+ param_grid = {}
45
+ metric_used = roc_auc_score
46
+
47
+ def get_uniform_single_eval_pos_sampler(max_len):
48
+ """
49
+ Just sample any evaluation position with the same weight
50
+ :return: Sampler that can be fed to `train()` as `single_eval_pos_gen`.
51
+ """
52
+ return lambda: random.choices(range(max_len))[0]
53
+
54
+
55
+ def get_mlp_prior_hyperparameters(config):
56
+ sigma_sampler = gamma_sampler_f(config["prior_sigma_gamma_k"], config["prior_sigma_gamma_theta"])
57
+ noise_std_sampler = gamma_sampler_f(config["prior_noise_std_gamma_k"], config["prior_noise_std_gamma_theta"])
58
+
59
+ mlp_prior_hyperparameters = (list(config["prior_nlayers_sampler"].values())[0]
60
+ , list(config["prior_emsize_sampler"].values())[0]
61
+ , config["prior_activations"]
62
+ , sigma_sampler
63
+ , noise_std_sampler
64
+ , list(config["prior_dropout_sampler"].values())[0]
65
+ , True
66
+ , list(config["prior_num_features_used_sampler"].values())[0]
67
+ , list(config["prior_causes_sampler"].values())[0] if config['prior_is_causal'] else None
68
+ , config["prior_is_causal"]
69
+ , config["prior_pre_sample_causes"] if config['prior_is_causal'] else None
70
+ , config["prior_pre_sample_weights"] if config['prior_is_causal'] else None
71
+ , config["prior_y_is_effect"] if config['prior_is_causal'] else None
72
+ , config["prior_order_y"]
73
+ , config["prior_normalize_by_used_features"]
74
+ , list(config["prior_categorical_feats"].values())[0] if config['prior_is_causal'] else None
75
+ , 0.0
76
+ )
77
+
78
+ return mlp_prior_hyperparameters
79
+
80
+
81
+ def get_gp_mix_prior_hyperparameters(config):
82
+ return {'lengthscale_concentration': config["prior_lengthscale_concentration"],
83
+ 'nu': config["prior_nu"],
84
+ 'outputscale_concentration': config["prior_outputscale_concentration"],
85
+ 'categorical_data': config["prior_y_minmax_norm"],
86
+ 'y_minmax_norm': config["prior_lengthscale_concentration"],
87
+ 'noise_concentration': config["prior_noise_concentration"],
88
+ 'noise_rate': config["prior_noise_rate"]}
89
+
90
+
91
+ def get_gp_prior_hyperparameters(config):
92
+
93
+
94
+ return (config['prior_noise']
95
+ , lambda : config['prior_outputscale']
96
+ , lambda : config['prior_lengthscale'] # lengthscale, Höher mehr sep
97
+ , True
98
+ , list(config['prior_num_features_used_sampler'].values())[0]
99
+ , config['prior_normalize_by_used_features']
100
+ , config['prior_order_y'])
101
+
102
+
103
+ def get_meta_gp_prior_hyperparameters(config):
104
+ lengthscale_sampler = trunc_norm_sampler_f(config["prior_lengthscale_mean"], config["prior_lengthscale_mean"] * config["prior_lengthscale_std_f"])
105
+ outputscale_sampler = trunc_norm_sampler_f(config["prior_outputscale_mean"], config["prior_outputscale_mean"] * config["prior_outputscale_std_f"])
106
+
107
+ return (config['prior_noise']
108
+ , outputscale_sampler
109
+ , lengthscale_sampler # lengthscale, Höher mehr sep
110
+ , True
111
+ , list(config['prior_num_features_used_sampler'].values())[0]
112
+ , config['prior_normalize_by_used_features']
113
+ , config['prior_order_y'])
114
+
115
+
116
+
117
+ def get_model(config, device, eval_positions, should_train=True, verbose=False):
118
+ extra_kwargs = {}
119
+ if config['prior_type'] == 'mlp':
120
+ prior_hyperparameters = get_mlp_prior_hyperparameters(config)
121
+ model_proto = priors.mlp.DataLoader
122
+ extra_kwargs['batch_size_per_gp_sample'] = 8
123
+ elif config['prior_type'] == 'gp':
124
+ prior_hyperparameters = get_gp_prior_hyperparameters(config)
125
+ model_proto = priors.fast_gp.DataLoader
126
+ elif config['prior_type'] == 'custom_gp_mix':
127
+ prior_hyperparameters = get_meta_gp_prior_hyperparameters(config)
128
+ model_proto = priors.fast_gp.DataLoader
129
+ elif config['prior_type'] == 'gp_mix':
130
+ prior_hyperparameters = get_gp_mix_prior_hyperparameters(config)
131
+ model_proto = priors.fast_gp_mix.DataLoader
132
+ else:
133
+ raise Exception()
134
+
135
+ epochs = 0 if not should_train else config['epochs']
136
+ model = train(model_proto
137
+ , Losses.bce
138
+ , encoders.Linear
139
+ , emsize=config['emsize']
140
+ , nhead=config['nhead']
141
+ , y_encoder_generator=encoders.Linear
142
+ , pos_encoder_generator=None
143
+ , batch_size=config['batch_size']
144
+ , nlayers=config['nlayers']
145
+ , nhid=config['emsize'] * config['nhid_factor']
146
+ , epochs=epochs
147
+ , warmup_epochs=epochs // 4
148
+ , bptt=config['bptt']
149
+ , gpu_device=device
150
+ , dropout=config['dropout']
151
+ , steps_per_epoch=100
152
+ , single_eval_pos_gen=get_uniform_single_eval_pos_sampler(max(eval_positions) + 1)
153
+ , extra_prior_kwargs_dict={
154
+ 'num_features': config['num_features']
155
+ # , 'canonical_args': None
156
+ , 'fuse_x_y': False
157
+ , 'hyperparameters': prior_hyperparameters
158
+ , **extra_kwargs
159
+ }
160
+ , lr=config['lr']
161
+ , verbose=verbose)
162
+
163
+ return model
164
+
165
+
166
+ ## General eval
167
+
168
+ def evaluate(datasets, model, method, bptt, eval_position_range, device, max_features=0, plot=False, extend_features=False, save=True, rescale_features=False, overwrite=False,
169
+ max_samples=40, path_interfix=''):
170
+ # eval_position_range: last entry is the one used to calculate metricuracy; up to index is used for training
171
+ result = {'metric': 'auc'}
172
+
173
+ metric_sum = 0
174
+ for [name, X, y, categorical_feats] in datasets:
175
+ result_ds = {}
176
+ path = f'/home/hollmann/prior-fitting/results/tabular/{path_interfix}/results_{method}_{name}.npy'
177
+ if (os.path.isfile(path)) and not overwrite:
178
+ with open(path, 'rb') as f:
179
+ result_ds = np.load(f, allow_pickle=True).tolist()
180
+ if 'time' in result_ds:
181
+ result_ds[name+'_time'] = result_ds['time']
182
+ del result_ds['time']
183
+ result.update(result_ds)
184
+ mean_metric = float(result[name + '_mean_metric_at_' + str(eval_position_range[-1])])
185
+ metric_sum += mean_metric
186
+ print(f'Loaded saved result for {name} (mean metric {mean_metric})')
187
+ continue
188
+
189
+ print('Evaluating ' + str(name))
190
+ rescale_features_factor = X.shape[1] / max_features if rescale_features and extend_features else 1.0
191
+ if extend_features:
192
+ X = torch.cat([X, torch.zeros((X.shape[0], max_features - X.shape[1]))], -1)
193
+
194
+ start_time = time.time()
195
+ ds_result = evaluate_dataset(X.to(device), y.to(device), categorical_feats, model, bptt, eval_position_range,
196
+ rescale_features=rescale_features_factor, max_samples=max_samples)
197
+ elapsed = time.time() - start_time
198
+
199
+ for i, r in enumerate(ds_result):
200
+ metric, outputs, ys = r
201
+ if save:
202
+ result_ds[name + '_per_ds_metric_at_' + str(eval_position_range[i])] = metric
203
+ result_ds[name + '_outputs_at_' + str(eval_position_range[i])] = outputs
204
+ result_ds[name + '_ys_at_' + str(eval_position_range[i])] = ys
205
+
206
+ result_ds[name + '_mean_metric_at_' + str(eval_position_range[i])] = metric_used(ys.detach().cpu().flatten(), outputs.flatten())
207
+ result_ds[name + '_time'] = elapsed
208
+
209
+ if save:
210
+ with open(path, 'wb') as f:
211
+ np.save(f, result_ds)
212
+
213
+ result.update(result_ds)
214
+ metric_sum += float(metric[-1].mean())
215
+
216
+ for pos in eval_position_range:
217
+ result[f'mean_metric_at_{pos}'] = np.array([result[d[0] + '_mean_metric_at_' + str(pos)] for d in datasets]).mean()
218
+
219
+ result['mean_metric'] = np.array([result['mean_metric_at_' + str(pos)] for pos in eval_position_range]).mean()
220
+
221
+ return result
222
+
223
+
224
+ def evaluate_dataset(X, y, categorical_feats, model, bptt, eval_position_range, plot=False, rescale_features=1.0,
225
+ max_samples=40):
226
+ result = []
227
+ for eval_position in eval_position_range:
228
+ r = evaluate_position(X, y, categorical_feats, model, bptt, eval_position, rescale_features=rescale_features,
229
+ max_samples=max_samples)
230
+ result.append(r)
231
+ print('\t Eval position ' + str(eval_position) + ' done..')
232
+
233
+ if plot:
234
+ plt.plot(np.array(list(eval_position_range)), np.array([r.mean() for r in result]))
235
+
236
+ return result
237
+
238
+
239
+ def evaluate_position(X, y, categorical_feats, model, bptt, eval_position, rescale_features=1.0, max_samples=40):
240
+ # right now permutation style is to test performance on one before the last element
241
+ # eval_position = bptt - eval_positions
242
+
243
+ # TODO: Make sure that no bias exists
244
+ # assert(eval_position % 2 == 0)
245
+
246
+ eval_xs = []
247
+ eval_ys = []
248
+ num_evals = len(X) - bptt # len(X)-bptt-(bptt-eval_position)+1
249
+
250
+ # Generate permutations of evaluation data
251
+ # with torch.random.fork_rng():
252
+ # torch.random.manual_seed(13)
253
+ # ps = [torch.randperm(2*(bptt - eval_position)) for _ in range(num_evals)]
254
+
255
+ for i in range(num_evals):
256
+ # Select chunk of data with extra evaluation positions that can be discarded
257
+ # x_ = X[i:i+bptt+(bptt-eval_position)].clone()
258
+ # y_ = y[i:i+bptt+(bptt-eval_position)].clone()
259
+
260
+ # # Permutate evaluation positions
261
+ # perm_range = slice(eval_position,bptt+(bptt - eval_position))
262
+ # x_[perm_range] = x_[perm_range][ps[i]]
263
+ # y_[perm_range] = y_[perm_range][ps[i]]
264
+
265
+ # # Discard extra evaluation positions
266
+ # x_ = x_[0:bptt]
267
+ # y_ = y_[0:bptt]
268
+
269
+ x_ = X[i:i + bptt].clone()
270
+ y_ = y[i:i + bptt].clone()
271
+
272
+ eval_xs.append(x_)
273
+ eval_ys.append(y_)
274
+
275
+ # eval data will be ordered in training range and
276
+ # will be a random subset of 2*eval_position data points in eval positions
277
+ eval_xs = torch.stack(eval_xs, 1)
278
+ eval_ys = torch.stack(eval_ys, 1)
279
+
280
+ # Limit to N samples per dataset
281
+ with torch.random.fork_rng():
282
+ torch.random.manual_seed(13)
283
+ sel = torch.randperm(eval_xs.shape[1])
284
+ eval_xs = eval_xs[:, sel[0:max_samples], :]
285
+ eval_ys = eval_ys[:, sel[0:max_samples]]
286
+ #
287
+ # if quantile_transform:
288
+ # for sample in range(0, eval_xs.shape[1]):
289
+ # quantile_transformer = preprocessing.QuantileTransformer(random_state=0, n_quantiles=eval_xs.shape[0])
290
+ # quantile_transformer.fit(eval_xs[:eval_position, sample].cpu())
291
+ # eval_xs[:, sample] = torch.tensor(quantile_transformer.transform(eval_xs[:, sample].cpu()))
292
+
293
+ if isinstance(model, nn.Module):
294
+ model.eval()
295
+ outputs = np.zeros(shape=(len(list(range(eval_position, eval_xs.shape[0]))), eval_xs.shape[1]))
296
+ for i, pos in enumerate(range(eval_position, eval_xs.shape[0])):
297
+ eval_x = torch.cat([eval_xs[:eval_position], eval_xs[pos].unsqueeze(0)])
298
+ eval_y = eval_ys[:eval_position]
299
+
300
+ # Center data using training positions so that it matches priors
301
+ mean = eval_x.mean(0)
302
+ std = eval_x.std(0) + .000001
303
+ eval_x = (eval_x - mean) / std
304
+ eval_x = eval_x / rescale_features
305
+
306
+ output = torch.sigmoid(model((eval_x, eval_y.float()), single_eval_pos=eval_position)).squeeze(-1)
307
+ outputs[i, :] = output.detach().cpu().numpy()
308
+
309
+ metric_per_t = np.array([metric_used(eval_ys[eval_position:, i].cpu(), outputs[:, i]) for i in range(eval_xs.shape[1])])
310
+ return metric_per_t, outputs, eval_ys[eval_position:]
311
+ else:
312
+ metric_eval_pos, outputs = batch_pred(model, eval_xs, eval_ys, categorical_feats, start=eval_position)
313
+
314
+ return metric_eval_pos, outputs, eval_ys[eval_position:]
315
+
316
+
317
+ def batch_pred(metric_function, eval_xs, eval_ys, categorical_feats, start=2):
318
+ metrics = []
319
+ outputs = []
320
+ # for i in tqdm(list(range(start,len(eval_xs)))):
321
+ eval_splits = list(zip(eval_xs.transpose(0, 1), eval_ys.transpose(0, 1)))
322
+ for eval_x, eval_y in tqdm(eval_splits): # eval x is One sample i.e. bptt x num_features
323
+ mean = eval_x[:start].mean(0)
324
+ std = eval_x[:start].std(0) + .000001
325
+ eval_x = (eval_x - mean) / std
326
+
327
+ metric, output = metric_function(eval_x[:start], eval_y[:start], eval_x[start:], eval_y[start:], categorical_feats)
328
+ metrics += [metric]
329
+ outputs += [output]
330
+ # metrics_per_t.append(metric_sum/eval_xs.shape[1])
331
+ return np.array(metrics), np.array(outputs).T
332
+
333
+ ## Ridge
334
+
335
+
336
+ from sklearn.linear_model import RidgeClassifier
337
+ # param_grid['ridge'] = {'alpha': [0, 0.1, .5, 1.0, 2.0], 'fit_intercept': [True, False]} # 'normalize': [False],
338
+ def ridge_metric(x, y, test_x, test_y, cat_features):
339
+ import warnings
340
+ def warn(*args, **kwargs):
341
+ pass
342
+
343
+ warnings.warn = warn
344
+
345
+ x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
346
+
347
+ clf = RidgeClassifier()
348
+
349
+ # create a dictionary of all values we want to test for n_neighbors
350
+ # use gridsearch to test all values for n_neighbors
351
+ clf = GridSearchCV(clf, param_grid['ridge'], cv=min(CV, x.shape[0]//2))
352
+ # fit model to data
353
+ clf.fit(x, y.long())
354
+
355
+ pred = clf.decision_function(test_x)
356
+ metric = metric_used(test_y.cpu().numpy(), pred)
357
+
358
+ return metric, pred
359
+
360
+
361
+ from sklearn.linear_model import LogisticRegression
362
+ param_grid['logistic'] = {'solver': ['saga'], 'penalty': ['l1', 'l2', 'none'], 'tol': [1e-2, 1e-4, 1e-10], 'max_iter': [500], 'fit_intercept': [True, False], 'C': [1e-5, 0.001, 0.01, 0.1, 1.0, 2.0]} # 'normalize': [False],
363
+ def logistic_metric(x, y, test_x, test_y, cat_features):
364
+ import warnings
365
+ def warn(*args, **kwargs):
366
+ pass
367
+
368
+ warnings.warn = warn
369
+
370
+ x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
371
+
372
+ clf = LogisticRegression()
373
+
374
+ # create a dictionary of all values we want to test for n_neighbors
375
+ # use gridsearch to test all values for n_neighbors
376
+ clf = GridSearchCV(clf, param_grid['logistic'], cv=min(CV, x.shape[0]//2))
377
+ # fit model to data
378
+ clf.fit(x, y.long())
379
+
380
+ pred = clf.predict_proba(test_x)[:, 1]
381
+ metric = metric_used(test_y.cpu().numpy(), pred)
382
+
383
+ return metric, pred
384
+
385
+
386
+ ## KNN
387
+ param_grid['knn'] = {'n_neighbors (max number of samples)': np.arange(1, 6)}
388
+ def knn_metric(x, y, test_x, test_y, cat_features):
389
+ x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
390
+
391
+ clf = neighbors.KNeighborsClassifier() # min(param['n_neighbors'],len(y)))
392
+ param_grid_knn = {'n_neighbors': np.arange(1, min(6, len(y) - 1))}
393
+ # create a dictionary of all values we want to test for n_neighbors
394
+ # use gridsearch to test all values for n_neighbors
395
+ clf = GridSearchCV(clf, param_grid_knn, cv=min(CV, x.shape[0]//2))
396
+ # fit model to data
397
+ clf.fit(x, y.long())
398
+
399
+ # print(clf.best_params_)
400
+
401
+ # clf.fit(x, y.long())
402
+ pred = clf.predict_proba(test_x)[:, 1]
403
+
404
+ metric = metric_used(test_y.cpu().numpy(), pred)
405
+
406
+ return metric, pred
407
+
408
+
409
+ ## Bayesian NN
410
+ class BayesianModel(PyroModule):
411
+ def __init__(self, model_spec, device='cuda'):
412
+ super().__init__()
413
+
414
+ self.device = device
415
+ self.num_features = model_spec['num_features']
416
+
417
+ mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
418
+
419
+ self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
420
+ self.fc1.weight = PyroSample(
421
+ dist.Normal(mu, sigma).expand([model_spec['embed'], self.num_features]).to_event(2))
422
+ self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
423
+ self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
424
+ self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
425
+ self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
426
+
427
+ self.model = torch.nn.Sequential(self.fc1, self.fc2)
428
+
429
+ self.to(self.device)
430
+
431
+ def forward(self, x=None, y=None, seq_len=1):
432
+ if x is None:
433
+ with pyro.plate("x_plate", seq_len):
434
+ d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
435
+ [self.num_features]).to_event(1)
436
+ x = pyro.sample("x", d_)
437
+
438
+ out = self.model(x)
439
+ mu = out.squeeze()
440
+ softmax = torch.nn.Softmax(dim=1)
441
+ # sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
442
+ with pyro.plate("data", out.shape[0]):
443
+ # d_ = dist.Normal(mu, sigma)
444
+ # obs = pyro.sample("obs", d_, obs=y)
445
+ s = softmax(mu)
446
+ obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
447
+
448
+ return x, obs
449
+
450
+
451
+ class BayesianNNClassifier(BaseEstimator, ClassifierMixin):
452
+
453
+ def __init__(self, num_features, n_layers, embed, lr, device):
454
+ self.num_pred_samples = 400
455
+ self.num_steps = 400
456
+ self.embed = embed
457
+ self.n_layers = n_layers
458
+ self.lr = lr
459
+ self.num_features = num_features
460
+ self.device = device
461
+
462
+ def fit(self, X, y):
463
+ model_spec = {'nlayers': 2, 'embed': self.embed, 'num_features': self.num_features}
464
+
465
+ self.model = BayesianModel(model_spec, device=self.device)
466
+ self.guide = AutoDiagonalNormal(self.model).to(self.device)
467
+ self.adam = pyro.optim.Adam({"lr": self.lr})
468
+ self.svi = SVI(self.model, self.guide, self.adam, loss=Trace_ELBO())
469
+
470
+ pyro.clear_param_store()
471
+
472
+ X = X.to(self.device)
473
+ y = y.to(self.device)
474
+
475
+ for epoch in tqdm(range(0, self.num_steps)):
476
+ loss = self.svi.step(X, y)
477
+
478
+ # Return the classifier
479
+ return self
480
+
481
+ def predict(self, X):
482
+ X = X.to(self.device)
483
+ predictive = Predictive(self.model, guide=self.guide, num_samples=self.num_pred_samples)
484
+ preds = predictive(X)['obs']
485
+ preds_means = preds.float().mean(axis=0).detach().cpu()
486
+ preds_hard = preds_means > 0.5
487
+
488
+ return preds_hard.long()
489
+
490
+ def predict_proba(self, X):
491
+ X = X.to(self.device)
492
+ predictive = Predictive(self.model, guide=self.guide, num_samples=self.num_pred_samples)
493
+ preds = predictive(X)['obs']
494
+ preds_means = preds.float().mean(axis=0).detach().cpu()
495
+
496
+ return preds_means
497
+
498
+ def score(self, X, y):
499
+ return super().score(X, y)
500
+
501
+ param_grid['bayes'] = {'embed': [5, 10, 30, 64], 'lr': [1e-3, 1e-4], 'num_training_steps': [400], 'num_samples_for_prediction': [400]}
502
+ def bayes_net_metric(x, y, test_x, test_y, cat_features):
503
+ device = x.device
504
+
505
+ clf = BayesianNNClassifier(x.shape[1], 2, 1, 1e-3, device)
506
+ # create a dictionary of all values we want to test for n_neighbors
507
+ # use gridsearch to test all values for n_neighbors
508
+ clf = GridSearchCV(clf, param_grid['bayes'], cv=5)
509
+ # fit model to data
510
+ clf.fit(x.cpu(), y.long().cpu())
511
+
512
+ pred = clf.predict_proba(test_x)
513
+ metric = metric_used(test_y.cpu().numpy(), pred.cpu().numpy())
514
+
515
+ return metric, pred
516
+
517
+ ## GP
518
+ param_grid['gp'] = {'params_y_scale': [0.05, 0.1, 0.5, 1.0, 5.0, 10.0],
519
+ 'params_length_scale': [0.1, 0.5, 1.0, 2.0]}
520
+ def gp_metric(x, y, test_x, test_y, cat_features):
521
+ import warnings
522
+ def warn(*args, **kwargs):
523
+ pass
524
+ warnings.warn = warn
525
+
526
+ x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
527
+
528
+ clf = GaussianProcessClassifier()
529
+ # create a dictionary of all values we want to test for n_neighbors
530
+ params_y_scale = [0.05, 0.1, 0.5, 1.0, 5.0, 10.0]# 0.000001, 0.00001,
531
+ params_length_scale = [0.1, 0.5, 1.0, 2.0] # 0.01,
532
+ param_grid = {'kernel': [y * RBF(l) for (y, l) in list(itertools.product(params_y_scale, params_length_scale))]}
533
+ # use gridsearch to test all values for n_neighbors
534
+ clf = GridSearchCV(clf, param_grid, cv=min(CV, x.shape[0]//2))
535
+ # fit model to data
536
+ clf.fit(x, y.long())
537
+ pred = clf.predict_proba(test_x)[:, 1]
538
+ metric = metric_used(test_y.cpu().numpy(), pred)
539
+
540
+ return metric, pred
541
+
542
+
543
+ ## Tabnet
544
+ # https://github.com/dreamquark-ai/tabnet
545
+ param_grid['tabnet'] = {'n_d': [2, 4], 'n_steps': [2,4,6], 'gamma': [1.3], 'optimizer_params': [{'lr': 2e-2}, {'lr': 2e-1}]}
546
+ #param_grid['tabnet'] = {'n_d': [2], 'n_steps': [2], 'optimizer_params': [{'lr': 2e-2}, {'lr': 2e-1}]}
547
+ def tabnet_metric(x, y, test_x, test_y, cat_features):
548
+ x, y, test_x, test_y = x.cpu().numpy(), y.cpu().numpy(), test_x.cpu().numpy(), test_y.cpu().numpy()
549
+
550
+ mean_metrics = []
551
+ mean_best_epochs = []
552
+
553
+ for params in list(ParameterGrid(param_grid['tabnet'])):
554
+ kf = KFold(n_splits=min(5, x.shape[0]//2), random_state=None, shuffle=False)
555
+ metrics = []
556
+ best_epochs = []
557
+ for train_index, test_index in kf.split(x):
558
+ X_train, X_valid, y_train, y_valid = x[train_index], x[test_index], y[train_index], y[test_index]
559
+
560
+ clf = TabNetClassifier(verbose=True, cat_idxs=cat_features, n_a=params['n_d'], **params)
561
+
562
+ clf.fit(
563
+ X_train, y_train,
564
+ #eval_set=[(X_valid, y_valid)], patience=15
565
+ )
566
+
567
+ metric = metric_used(test_y.cpu().numpy(), clf.predict(X_valid))
568
+ metrics += [metric]
569
+ #best_epochs += [clf.best_epoch]
570
+ mean_metrics += [np.array(metrics).mean()]
571
+ #mean_best_epochs += [np.array(best_epochs).mean().astype(int)]
572
+
573
+ mean_metrics = np.array(mean_metrics)
574
+ #mean_best_epochs = np.array(mean_best_epochs)
575
+ params_used = np.array(list(ParameterGrid(param_grid['tabnet'])))
576
+
577
+ best_idx = np.argmax(mean_metrics)
578
+ #print(params_used[best_idx])
579
+ clf = TabNetClassifier(cat_idxs=cat_features, **params_used[best_idx])
580
+
581
+ clf.fit(
582
+ x, y#, max_epochs=mean_best_epochs[best_idx]
583
+ )
584
+
585
+ pred = 1 - clf.predict_proba(test_x)[:,0]
586
+ metric = metric_used(test_y, pred)
587
+
588
+ #print(metric, clf.predict(test_x), pred)
589
+
590
+ return metric, pred
591
+
592
+
593
+ # Catboost
594
+ param_grid['catboost'] = {'learning_rate': [0.1, 0.5, 1.0],
595
+ 'depth': [2, 4, 7],
596
+ 'l2_leaf_reg': [0.0, 0.5, 1],
597
+ 'iterations': [10, 40, 70],
598
+ 'loss_function': ['Logloss']}
599
+ def catboost_metric(x, y, test_x, test_y, categorical_feats):
600
+ import warnings
601
+ def warn(*args, **kwargs):
602
+ pass
603
+
604
+ warnings.warn = warn
605
+
606
+ x, y, test_x, test_y = x.numpy(), y.numpy(), test_x.numpy(), test_y.numpy()
607
+
608
+ def make_pd_from_np(x):
609
+ data = pd.DataFrame(x)
610
+ for c in categorical_feats:
611
+ data.iloc[:, c] = data.iloc[:, c].astype('int')
612
+ return data
613
+
614
+ x = make_pd_from_np(x)
615
+ test_x = make_pd_from_np(test_x)
616
+
617
+ model = CatBoostClassifier(iterations=2,
618
+ depth=2,
619
+ learning_rate=1,
620
+ loss_function='Logloss',
621
+ logging_level='Silent')
622
+
623
+ grid_search_result = model.grid_search(param_grid['catboost'],
624
+ X=x,
625
+ y=y,
626
+ cv=5,
627
+ plot=False,
628
+ verbose=False) # randomized_search with n_iter
629
+
630
+ # model.fit(x, y)
631
+ pred = model.predict_proba(test_x)[:, 1]
632
+ metric = metric_used(test_y.cpu().numpy(), pred)
633
+
634
+ return metric, pred
635
+
636
+
637
+ # XGBoost
638
+ param_grid['xgb'] = {
639
+ 'min_child_weight': [0.5, 1.0],
640
+ 'learning_rate': [0.02, 0.2],
641
+ #'gamma': [0.1, 0.2, 0.5, 1, 2],
642
+ 'subsample': [0.5, 0.8],
643
+ 'max_depth': [1, 2],
644
+ 'colsample_bytree': [0.8], #0.5,
645
+ 'eval_metric': ['logloss'],
646
+ 'n_estimators': [100]
647
+ }
648
+ def xgb_metric(x, y, test_x, test_y, cat_features):
649
+ x, y, test_x, test_y = x.numpy(), y.numpy().astype(int), test_x.numpy(), test_y.numpy().astype(int)
650
+
651
+ clf = xgb.XGBClassifier(use_label_encoder=False)
652
+
653
+ # {'num_round': [2,5,10,20], 'max_depth': [1, 2,4,6,8], 'eta': [.1, .01, .001], 'eval_metric': 'logloss'}
654
+ # use gridsearch to test all values for n_neighbors
655
+ clf = GridSearchCV(clf, param_grid['xgb'], cv=5, n_jobs=4, verbose=2)
656
+ # fit model to data
657
+ clf.fit(x, y.astype(int))
658
+
659
+ print(clf.best_params_)
660
+
661
+ # clf.fit(x, y.long())
662
+ pred = clf.predict_proba(test_x)[:, 1]
663
+ metrics = ((pred > 0.5) == test_y).astype(float).mean()
664
+ return metrics, pred
665
+
666
+ def get_default_spec(test_datasets, valid_datasets):
667
+ bptt = 100
668
+ eval_positions = [30] #list(range(6, 42, 2)) # list(range(10, bptt-10, 20)) + [bptt-10]
669
+ max_features = max([X.shape[1] for (_, X, _, _) in test_datasets] + [X.shape[1] for (_, X, _, _) in valid_datasets])
670
+ max_samples = 20
671
+
672
+ return bptt, eval_positions, max_features, max_samples
673
+
674
+ if __name__ == '__main__':
675
+ parser = argparse.ArgumentParser()
676
+ parser.add_argument('--method', default='ridge', type=str)
677
+ parser.add_argument('--did', default=-1, type=int)
678
+ parser.add_argument('--overwrite', default=False, type=bool)
679
+ args = parser.parse_args()
680
+
681
+ test_datasets, _ = load_openml_list(test_dids_classification)
682
+ valid_datasets, _ = load_openml_list(valid_dids_classification)
683
+
684
+ selector = 'test'
685
+ ds = valid_datasets if selector == 'valid' else test_datasets
686
+ if args.did > -1:
687
+ ds = ds[args.did:args.did+1]
688
+
689
+ bptt, eval_positions, max_features, max_samples = get_default_spec(test_datasets, valid_datasets)
690
+
691
+ if args.method == 'bayes':
692
+ clf = bayes_net_metric
693
+ device = 'cpu'
694
+ elif args.method == 'gp':
695
+ clf = gp_metric
696
+ device = 'cpu'
697
+ elif args.method == 'ridge':
698
+ clf = ridge_metric
699
+ device = 'cpu'
700
+ elif args.method == 'knn':
701
+ clf = knn_metric
702
+ device = 'cpu'
703
+ elif args.method == 'catboost':
704
+ clf = catboost_metric
705
+ device = 'cpu'
706
+ elif args.method == 'tabnet':
707
+ clf = tabnet_metric
708
+ device = 'cpu'
709
+ elif args.method == 'xgb':
710
+ # Uses lots of cpu so difficult to time
711
+ clf = xgb_metric
712
+ device = 'cpu'
713
+ elif args.method == 'logistic':
714
+ clf = logistic_metric
715
+ device = 'cpu'
716
+ else:
717
+ clf = None
718
+ device = 'cpu'
719
+
720
+ start_time = time.time()
721
+ result = evaluate(ds, clf, args.method, bptt, eval_positions, device=device, max_samples=max_samples, overwrite=args.overwrite, save=True)
722
+ result['time_spent'] = time.time() - start_time
723
+
724
+ with open(f'/home/hollmann/prior-fitting/results/tabular/results_{selector}_{args.method}.npy', 'wb') as f:
725
+ np.save(f, result)
prior-fitting/train.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ import yaml
4
+
5
+ import torch
6
+ from torch import nn
7
+ from transformer import TransformerModel
8
+ from bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits
9
+ from utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
10
+ import priors
11
+ import encoders
12
+ import positional_encodings
13
+
14
+ class Losses():
15
+ gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
16
+ mse = nn.MSELoss(reduction='none')
17
+ ce = nn.CrossEntropyLoss(reduction='none')
18
+ bce = nn.BCEWithLogitsLoss(reduction='none')
19
+ get_BarDistribution = BarDistribution
20
+
21
+
22
+ def train(priordataloader_class, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.2,
23
+ epochs=10, steps_per_epoch=100, batch_size=200, bptt=10, lr=None, warmup_epochs=10, input_normalization=False,
24
+ y_encoder_generator=None, pos_encoder_generator=None, decoder=None, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
25
+ load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
26
+ aggregate_k_gradients=1, verbose=True
27
+ ):
28
+
29
+ device = gpu_device if torch.cuda.is_available() else 'cpu:0'
30
+ print(f'Using {device} device')
31
+ dl = priordataloader_class(num_steps=steps_per_epoch, batch_size=batch_size, seq_len=bptt, **extra_prior_kwargs_dict)
32
+
33
+ encoder = encoder_generator(dl.num_features+1 if dl.fuse_x_y else dl.num_features,emsize)
34
+ n_out = dl.num_outputs
35
+ if isinstance(criterion, nn.GaussianNLLLoss):
36
+ n_out *= 2
37
+ elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
38
+ assert n_out == 1
39
+ n_out = criterion.num_bars
40
+ model = TransformerModel(encoder, n_out, emsize, nhead, nhid, nlayers, dropout,
41
+ y_encoder=y_encoder_generator(1, emsize), input_normalization=input_normalization,
42
+ pos_encoder=(pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, bptt*2),
43
+ decoder=decoder
44
+ )
45
+ model.criterion = criterion
46
+ if load_weights_from_this_state_dict is not None:
47
+ model.load_state_dict(load_weights_from_this_state_dict)
48
+ model.to(device)
49
+
50
+
51
+ # learning rate
52
+ if lr is None:
53
+ lr = get_openai_lr(model)
54
+ print(f"Using OpenAI max lr of {lr}.")
55
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
56
+ scheduler = scheduler(optimizer, warmup_epochs, epochs)
57
+
58
+ def train():
59
+ model.train() # Turn on the train mode
60
+ total_loss = 0.
61
+ total_positional_losses = 0.
62
+ total_positional_losses_recorded = 0
63
+ start_time = time.time()
64
+ before_get_batch = time.time()
65
+ assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
66
+ for batch, (data, targets) in enumerate(dl):
67
+ time_to_get_batch = time.time() - before_get_batch
68
+ before_forward = time.time()
69
+ single_eval_pos = single_eval_pos_gen() if callable(single_eval_pos_gen) else single_eval_pos_gen
70
+ output = model(tuple(e.to(device) for e in data) if isinstance(data, tuple) else data.to(device)
71
+ , single_eval_pos=single_eval_pos)
72
+
73
+ forward_time = time.time() - before_forward
74
+
75
+ if single_eval_pos is not None:
76
+ targets = targets[single_eval_pos:]
77
+
78
+ if isinstance(criterion, nn.GaussianNLLLoss):
79
+ assert output.shape[-1] == 2, \
80
+ 'need to write a little bit of code to handle multiple regression targets at once'
81
+
82
+ mean_pred = output[..., 0]
83
+ var_pred = output[..., 1].abs()
84
+ losses = criterion(mean_pred.flatten(), targets.to(device).flatten(), var=var_pred.flatten())
85
+ elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
86
+ losses = criterion(output.flatten(), targets.to(device).flatten())
87
+ else:
88
+ losses = criterion(output.reshape(-1, n_out), targets.to(device).flatten())
89
+ losses = losses.view(*output.shape[0:2]).squeeze(-1)
90
+
91
+
92
+ loss = losses.mean()
93
+ loss.backward()
94
+ if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
95
+ torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
96
+ optimizer.step()
97
+ optimizer.zero_grad()
98
+
99
+ step_time = time.time() - before_forward
100
+
101
+ total_loss += loss.item()
102
+ total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
103
+ nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)*loss.cpu().detach()
104
+
105
+ total_positional_losses_recorded += torch.ones(bptt) if single_eval_pos is None else \
106
+ nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)
107
+
108
+ before_get_batch = time.time()
109
+ return total_loss / steps_per_epoch, (
110
+ total_positional_losses / total_positional_losses_recorded).tolist(), time_to_get_batch, forward_time, step_time
111
+
112
+ best_val_loss = float("inf")
113
+ best_model = None
114
+ total_loss = float('inf')
115
+ total_positional_losses = float('inf')
116
+ for epoch in range(1, epochs + 1):
117
+ epoch_start_time = time.time()
118
+ total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time = train()
119
+ if hasattr(dl, 'validate') and epoch % validation_period == 0:
120
+ with torch.no_grad():
121
+ val_score = dl.validate(model)
122
+ else:
123
+ val_score = None
124
+
125
+ if verbose:
126
+ print('-' * 89)
127
+ print(
128
+ f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
129
+ f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
130
+ f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
131
+ f' forward time {forward_time:5.2f}' + (f'val score {val_score}' if val_score is not None else ''))
132
+ print('-' * 89)
133
+
134
+ scheduler.step()
135
+ return total_loss, total_positional_losses, model.to('cpu')
136
+
137
+ def _parse_args(config_parser, parser):
138
+ # Do we have a config file to parse?
139
+ args_config, remaining = config_parser.parse_known_args()
140
+ if args_config.config:
141
+ with open(args_config.config, 'r') as f:
142
+ cfg = yaml.safe_load(f)
143
+ parser.set_defaults(**cfg)
144
+
145
+ # The main arg parser parses the rest of the args, the usual
146
+ # defaults will have been overridden if config file specified.
147
+ args = parser.parse_args(remaining)
148
+
149
+ # Cache the args as a text string to save them in the output dir later
150
+ args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
151
+ return args, args_text
152
+
153
+
154
+ if __name__ == '__main__':
155
+ config_parser = argparse.ArgumentParser(description='Only used as a first parser for the config file path.')
156
+ config_parser.add_argument('--config')
157
+ parser = argparse.ArgumentParser()
158
+ parser.add_argument('prior')
159
+ parser.add_argument('--loss_function', default='barnll')
160
+ # Optional Arg's for `--loss_function barnll`
161
+ parser.add_argument('--min_y', type=float, help='barnll can only model y in strict ranges, this is the minimum y can take.')
162
+ parser.add_argument('--max_y', type=float, help='barnll can only model y in strict ranges, this is the maximum y can take.')
163
+ parser.add_argument('--num_buckets', default=100, type=int)
164
+ #parser.add_argument('--num_features', default=None, type=int, help='Specify depending on the prior.')
165
+ parser.add_argument("--extra_prior_kwargs_dict", default={'fuse_x_y': False}, dest="extra_prior_kwargs_dict", action=StoreDictKeyPair, nargs="+", metavar="KEY=VAL", help='Specify depending on the prior.')
166
+ parser.add_argument('--encoder', default='linear', type=str, help='Specify depending on the prior.')
167
+ parser.add_argument('--y_encoder', default='linear', type=str, help='Specify depending on the prior. You should specify this if you do not fuse x and y.')
168
+ parser.add_argument('--pos_encoder', default='sinus', type=str, help='Specify depending on the prior.')
169
+ parser.add_argument('--bptt', default=10, type=int)
170
+ parser.add_argument('--epochs', default=200, type=int)
171
+ parser.add_argument('--warmup_epochs', default=50, type=int)
172
+ parser.add_argument('--validation_period', default=10, type=int)
173
+ parser.add_argument('--permutation_invariant_max_eval_pos', default=None, type=int, help='Set this to an int to ')
174
+ parser.add_argument('--permutation_invariant_sampling', default='weighted', help="Only relevant if --permutation_invariant_max_eval_pos is set.")
175
+
176
+ # these can likely be mostly left at defaults
177
+ parser.add_argument('--emsize', default=512, type=int) # sometimes even larger is better e.g. 1024
178
+ parser.add_argument('--nlayers', default=6, type=int)
179
+ parser.add_argument('--nhid', default=None, type=int) # 2*emsize is the default
180
+ parser.add_argument('--nhead', default=4, type=int) # nhead = emsize / 64 in the original paper
181
+ parser.add_argument('--dropout', default=.0, type=float)
182
+ parser.add_argument('--steps_per_epoch', default=10, type=int)
183
+ parser.add_argument('--batch_size', default=1000, type=int)
184
+ parser.add_argument('--lr', '--learning_rate', default=.001, type=float) # try also .0003, .0001, go lower with lower batch size
185
+
186
+ args, _ = _parse_args(config_parser, parser)
187
+
188
+ if args.nhid is None:
189
+ args.nhid = 2*args.emsize
190
+
191
+ prior = args.__dict__.pop('prior')
192
+
193
+ if prior == 'gp':
194
+ prior = priors.fast_gp.DataLoader
195
+ elif prior == 'ridge':
196
+ prior = priors.ridge.DataLoader
197
+ elif prior == 'stroke':
198
+ prior = priors.stroke.DataLoader
199
+ elif prior == 'mix_gp':
200
+ prior = priors.fast_gp_mix.DataLoader
201
+ else:
202
+ raise NotImplementedError(f'Prior == {prior}.')
203
+
204
+
205
+ loss_function = args.__dict__.pop('loss_function')
206
+
207
+ criterion = nn.GaussianNLLLoss(reduction='none', full=True)
208
+ classificiation_criterion = nn.CrossEntropyLoss(reduction='none')
209
+ num_buckets = args.__dict__.pop('num_buckets')
210
+ max_y = args.__dict__.pop('max_y')
211
+ min_y = args.__dict__.pop('min_y')
212
+ # criterion = nn.MSELoss(reduction='none')
213
+
214
+ def get_y_sample():
215
+ dl = prior(num_steps=1, batch_size=args.batch_size * args.steps_per_epoch, seq_len=args.bptt,
216
+ **args.extra_prior_kwargs_dict)
217
+ y_sample = next(iter(dl))[-1]
218
+ print(f'Creating Bar distribution with borders from y sample of size {y_sample.numel()}')
219
+ return y_sample
220
+
221
+ if loss_function == 'ce':
222
+ criterion = nn.CrossEntropyLoss(reduction='none')
223
+ elif loss_function == 'gaussnll':
224
+ criterion = nn.GaussianNLLLoss(reduction='none', full=True)
225
+ elif loss_function == 'mse':
226
+ criterion = nn.MSELoss(reduction='none')
227
+ elif loss_function == 'barnll':
228
+ criterion = BarDistribution(borders=get_bucket_limits(num_buckets, full_range=(min_y,max_y)))
229
+ elif loss_function == 'adaptivebarnll':
230
+ borders = get_bucket_limits(num_buckets, ys=get_y_sample(), full_range=(min_y,max_y))
231
+ criterion = BarDistribution(borders=borders)
232
+ elif loss_function == 'adaptivefullsupportbarnll':
233
+ assert min_y is None and max_y is None, "Please do not specify `min_y` and `max_y` with `unboundedadaptivebarnll`."
234
+ borders = get_bucket_limits(num_buckets, ys=get_y_sample())
235
+ criterion = FullSupportBarDistribution(borders=borders)
236
+ else:
237
+ raise NotImplementedError(f'loss_function == {loss_function}.')
238
+
239
+
240
+
241
+ encoder = args.__dict__.pop('encoder')
242
+ y_encoder = args.__dict__.pop('y_encoder')
243
+
244
+ def get_encoder_generator(encoder):
245
+ if encoder == 'linear':
246
+ encoder_generator = encoders.Linear
247
+ elif encoder == 'mlp':
248
+ encoder_generator = encoders.MLP
249
+ elif encoder == 'positional':
250
+ encoder_generator = encoders.Positional
251
+ else:
252
+ raise NotImplementedError(f'A {encoder} encoder is not valid.')
253
+ return encoder_generator
254
+
255
+ encoder_generator = get_encoder_generator(encoder)
256
+ y_encoder_generator = get_encoder_generator(y_encoder)
257
+
258
+ pos_encoder = args.__dict__.pop('pos_encoder')
259
+
260
+ if pos_encoder == 'none':
261
+ pos_encoder_generator = None
262
+ elif pos_encoder == 'sinus':
263
+ pos_encoder_generator = positional_encodings.PositionalEncoding
264
+ elif pos_encoder == 'learned':
265
+ pos_encoder_generator = positional_encodings.LearnedPositionalEncoding
266
+ elif pos_encoder == 'paired_scrambled_learned':
267
+ pos_encoder_generator = positional_encodings.PairedScrambledPositionalEncodings
268
+ else:
269
+ raise NotImplementedError(f'pos_encoer == {pos_encoder} is not valid.')
270
+
271
+ permutation_invariant_max_eval_pos = args.__dict__.pop('permutation_invariant_max_eval_pos')
272
+ permutation_invariant_sampling = args.__dict__.pop('permutation_invariant_sampling')
273
+ if permutation_invariant_max_eval_pos is not None:
274
+ if permutation_invariant_sampling == 'weighted':
275
+ get_sampler = get_weighted_single_eval_pos_sampler
276
+ elif permutation_invariant_sampling == 'uniform':
277
+ get_sampler = get_uniform_single_eval_pos_sampler
278
+ else:
279
+ raise ValueError()
280
+ args.__dict__['single_eval_pos_gen'] = get_sampler(permutation_invariant_max_eval_pos)
281
+
282
+
283
+ print("ARGS for `train`:", args.__dict__)
284
+
285
+ train(prior, criterion, encoder_generator,
286
+ y_encoder_generator=y_encoder_generator,pos_encoder_generator=pos_encoder_generator,
287
+ **args.__dict__)
288
+
prior-fitting/transformer.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch.nn import TransformerEncoder, TransformerEncoderLayer
8
+ from torch.nn.modules.transformer import MultiheadAttention, _get_activation_fn
9
+
10
+ from utils import SeqBN
11
+
12
+
13
+ class TransformerModel(nn.Module):
14
+ def __init__(self, encoder, n_out, ninp, nhead, nhid, nlayers, dropout=0.0, y_encoder=None, pos_encoder=None, decoder=None, input_normalization=False):
15
+ super().__init__()
16
+ self.model_type = 'Transformer'
17
+ encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout, activation='gelu')
18
+ self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
19
+ self.ninp = ninp
20
+ self.encoder = encoder
21
+ self.y_encoder = y_encoder
22
+ self.pos_encoder = pos_encoder
23
+ self.decoder = decoder(ninp, nhid, n_out) if decoder is not None else nn.Sequential(nn.Linear(ninp, nhid), nn.GELU(), nn.Linear(nhid, n_out))
24
+ self.input_ln = SeqBN(ninp) if input_normalization else None
25
+
26
+ self.init_weights()
27
+
28
+ @staticmethod
29
+ def generate_square_subsequent_mask(sz):
30
+ mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
31
+ mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
32
+ return mask
33
+
34
+ @staticmethod
35
+ def generate_D_q_matrix(sz, query_size):
36
+ train_size = sz-query_size
37
+ mask = torch.zeros(sz,sz) == 0
38
+ mask[:,train_size:].zero_()
39
+ mask |= torch.eye(sz) == 1
40
+ mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
41
+ return mask
42
+
43
+ def init_weights(self):
44
+ initrange = 1.
45
+ # if isinstance(self.encoder,EmbeddingEncoder):
46
+ # self.encoder.weight.data.uniform_(-initrange, initrange)
47
+ # self.decoder.bias.data.zero_()
48
+ # self.decoder.weight.data.uniform_(-initrange, initrange)
49
+ for layer in self.transformer_encoder.layers:
50
+ nn.init.zeros_(layer.linear2.weight)
51
+ nn.init.zeros_(layer.linear2.bias)
52
+ nn.init.zeros_(layer.self_attn.out_proj.weight)
53
+ nn.init.zeros_(layer.self_attn.out_proj.bias)
54
+
55
+ def forward(self, src, src_mask=None, single_eval_pos=None):
56
+ assert single_eval_pos is not None, 'Single eval pos is required now.'
57
+ fuse_x_y = not isinstance(src, tuple)
58
+ assert not(fuse_x_y and single_eval_pos is not None), \
59
+ 'Don\'t use both fuxe_x_y and single_eval_pos (permutation equivariant setup) at the same time.'
60
+ if src_mask is None:
61
+ x_src = src if fuse_x_y else src[0]
62
+ if single_eval_pos is None:
63
+ src_mask = self.generate_square_subsequent_mask(len(x_src) if fuse_x_y else 2*len(x_src)).to(x_src.device)
64
+ else:
65
+ src_mask = self.generate_D_q_matrix(len(x_src), len(x_src)-single_eval_pos).to(x_src.device)
66
+ if not fuse_x_y:
67
+ x_src, y_src = src
68
+ x_src = self.encoder(x_src)
69
+ y_src = self.y_encoder(y_src.unsqueeze(-1))
70
+ if single_eval_pos is None:
71
+ src = torch.stack([x_src, y_src], 1).view(-1, *x_src.shape[1:])
72
+ else:
73
+ train_x = x_src[:single_eval_pos] + y_src[:single_eval_pos]
74
+ src = torch.cat([train_x, x_src[single_eval_pos:]], 0)
75
+ else:
76
+ src = self.encoder(src)
77
+
78
+ if self.input_ln is not None:
79
+ src = self.input_ln(src)
80
+
81
+ if self.pos_encoder is not None:
82
+ src = self.pos_encoder(src)
83
+
84
+ output = self.transformer_encoder(src, src_mask)
85
+ output = self.decoder(output)
86
+ if fuse_x_y:
87
+ return output
88
+ elif single_eval_pos is None:
89
+ return output[0::2]
90
+ else:
91
+ return output[single_eval_pos:]
prior-fitting/utils.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import argparse
3
+ import random
4
+
5
+ import torch
6
+ from torch import nn
7
+ from torch.optim.lr_scheduler import LambdaLR
8
+
9
+ # copied from huggingface
10
+ def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5, last_epoch=-1):
11
+ """ Create a schedule with a learning rate that decreases following the
12
+ values of the cosine function between 0 and `pi * cycles` after a warmup
13
+ period during which it increases linearly between 0 and 1.
14
+ """
15
+
16
+ def lr_lambda(current_step):
17
+ if current_step < num_warmup_steps:
18
+ return float(current_step) / float(max(1, num_warmup_steps))
19
+ progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
20
+ return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
21
+
22
+ return LambdaLR(optimizer, lr_lambda, last_epoch)
23
+
24
+ # copied from huggingface
25
+ def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
26
+ """
27
+ Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
28
+ a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
29
+
30
+ Args:
31
+ optimizer (:class:`~torch.optim.Optimizer`):
32
+ The optimizer for which to schedule the learning rate.
33
+ num_warmup_steps (:obj:`int`):
34
+ The number of steps for the warmup phase.
35
+ num_training_steps (:obj:`int`):
36
+ The total number of training steps.
37
+ last_epoch (:obj:`int`, `optional`, defaults to -1):
38
+ The index of the last epoch when resuming training.
39
+
40
+ Return:
41
+ :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
42
+ """
43
+
44
+ def lr_lambda(current_step: int):
45
+ if current_step < num_warmup_steps:
46
+ return float(current_step) / float(max(1, num_warmup_steps))
47
+ return max(
48
+ 0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
49
+ )
50
+
51
+ return LambdaLR(optimizer, lr_lambda, last_epoch)
52
+
53
+
54
+ def get_openai_lr(transformer_model):
55
+ num_params = sum(p.numel() for p in transformer_model.parameters())
56
+ return 0.003239 - 0.0001395 * math.log(num_params)
57
+
58
+
59
+ def get_weighted_single_eval_pos_sampler(max_len):
60
+ """
61
+ This gives a sampler that can be used for `single_eval_pos` which yields good performance for all positions p,
62
+ where p <= `max_len`. At most `max_len` - 1 examples are shown to the Transformer.
63
+ :return: Sampler that can be fed to `train()` as `single_eval_pos_gen`.
64
+ """
65
+ return lambda: random.choices(range(max_len), [1 / (max_len - i) for i in range(max_len)])[0]
66
+
67
+
68
+ def get_uniform_single_eval_pos_sampler(max_len):
69
+ """
70
+ Just sample any evaluation position with the same weight
71
+ :return: Sampler that can be fed to `train()` as `single_eval_pos_gen`.
72
+ """
73
+ return lambda: random.choices(range(max_len))[0]
74
+
75
+
76
+ class SeqBN(nn.Module):
77
+ def __init__(self, d_model):
78
+ super().__init__()
79
+ self.bn = nn.BatchNorm1d(d_model)
80
+ self.d_model = d_model
81
+
82
+ def forward(self, x):
83
+ assert self.d_model == x.shape[-1]
84
+ flat_x = x.view(-1, self.d_model)
85
+ flat_x = self.bn(flat_x)
86
+ return flat_x.view(*x.shape)
87
+
88
+
89
+ def set_locals_in_self(locals):
90
+ self = locals['self']
91
+ for var_name, val in locals.items():
92
+ if var_name != 'self': setattr(self, var_name, val)
93
+
94
+
95
+ default_device = 'cuda:0' if torch.cuda.is_available() else 'cpu:0'
96
+
97
+
98
+ # Copied from StackOverflow, but we do an eval on the values additionally
99
+ class StoreDictKeyPair(argparse.Action):
100
+ def __init__(self, option_strings, dest, nargs=None, **kwargs):
101
+ self._nargs = nargs
102
+ super(StoreDictKeyPair, self).__init__(option_strings, dest, nargs=nargs, **kwargs)
103
+
104
+ def __call__(self, parser, namespace, values, option_string=None):
105
+ my_dict = {}
106
+ for kv in values:
107
+ k, v = kv.split("=")
108
+ try:
109
+ my_dict[k] = eval(v)
110
+ except NameError:
111
+ my_dict[k] = v
112
+ setattr(namespace, self.dest, my_dict)
113
+ print("dict values: {}".format(my_dict))
114
+
115
+
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Recommend to use python >= 3.9
2
+ gpytorch==1.5.0
3
+ pyro-ppl==1.7.0
4
+ torch==1.9.0
5
+ scikit-learn==0.24.2
6
+ pyyaml==5.4.1
7
+ blitz-bayesian-pytorch==0.2.7
8
+ seaborn==0.11.2
9
+ xgboost==1.4.0
10
+ tqdm==4.62.1
11
+ numpy==1.21.2
12
+ openml==0.12.2
13
+ catboost==0.26.1