Ron Au
commited on
Commit
·
df8d5b7
1
Parent(s):
b2e25cc
Initial Commit
Browse files- README.md +9 -6
- modules/app.py +51 -0
- modules/dataset.py +19 -0
- modules/inference.py +11 -0
- requirements.txt +7 -0
- start.py +3 -0
- static/index.html +0 -0
- static/index.js +126 -0
- static/style.css +79 -0
README.md
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 2.9.1
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
1 |
---
|
2 |
+
title: Fast API + Uvicorn
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 2.9.1
|
8 |
+
python_version: 3.10.4
|
9 |
+
app_file: start.py
|
10 |
+
models: [osanseviero/BigGAN-deep-128, t5-small]
|
11 |
+
datasets: [emotion]
|
12 |
license: mit
|
13 |
+
pinned: false
|
14 |
---
|
15 |
|
16 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
modules/app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
+
from fastapi import FastAPI
|
7 |
+
from fastapi.staticfiles import StaticFiles
|
8 |
+
from fastapi.responses import FileResponse, StreamingResponse
|
9 |
+
|
10 |
+
from modules.inference import infer_t5
|
11 |
+
from modules.dataset import query_emotion
|
12 |
+
|
13 |
+
# https://huggingface.co/settings/tokens
|
14 |
+
# https://huggingface.co/spaces/{username}/{space}/settings
|
15 |
+
API_TOKEN = os.getenv("BIG_GAN_TOKEN")
|
16 |
+
|
17 |
+
app = FastAPI(docs_url=None, redoc_url=None)
|
18 |
+
|
19 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
20 |
+
|
21 |
+
|
22 |
+
@app.head("/")
|
23 |
+
@app.get("/")
|
24 |
+
def index() -> FileResponse:
|
25 |
+
return FileResponse(path="static/index.html", media_type="text/html")
|
26 |
+
|
27 |
+
|
28 |
+
@app.get("/infer_biggan")
|
29 |
+
def biggan(input):
|
30 |
+
output = requests.request(
|
31 |
+
"POST",
|
32 |
+
"https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
|
33 |
+
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
34 |
+
data=json.dumps(input),
|
35 |
+
)
|
36 |
+
|
37 |
+
return StreamingResponse(BytesIO(output.content), media_type="image/png")
|
38 |
+
|
39 |
+
|
40 |
+
@app.get("/infer_t5")
|
41 |
+
def t5(input):
|
42 |
+
output = infer_t5(input)
|
43 |
+
|
44 |
+
return {"output": output}
|
45 |
+
|
46 |
+
|
47 |
+
@app.get("/query_emotion")
|
48 |
+
def emotion(start, end):
|
49 |
+
output = query_emotion(int(start), int(end))
|
50 |
+
|
51 |
+
return {"output": output}
|
modules/dataset.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
dataset = load_dataset("emotion", split="train")
|
4 |
+
|
5 |
+
emotions = dataset.info.features["label"].names
|
6 |
+
|
7 |
+
def query_emotion(start, end):
|
8 |
+
rows = dataset[start:end]
|
9 |
+
texts, labels = [rows[k] for k in rows.keys()]
|
10 |
+
|
11 |
+
observations = []
|
12 |
+
|
13 |
+
for i, text in enumerate(texts):
|
14 |
+
observations.append({
|
15 |
+
"text": text,
|
16 |
+
"emotion": emotions[labels[i]],
|
17 |
+
})
|
18 |
+
|
19 |
+
return observations
|
modules/inference.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
2 |
+
|
3 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
4 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
5 |
+
|
6 |
+
|
7 |
+
def infer_t5(input):
|
8 |
+
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
9 |
+
outputs = model.generate(input_ids)
|
10 |
+
|
11 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==2.*
|
2 |
+
fastapi==0.74.*
|
3 |
+
requests==2.27.*
|
4 |
+
sentencepiece==0.1.*
|
5 |
+
torch==1.11.*
|
6 |
+
transformers==4.*
|
7 |
+
uvicorn[standard]==0.17.*
|
start.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
subprocess.run("uvicorn modules.app:app --host 0.0.0.0 --port 7860", shell=True)
|
static/index.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
static/index.js
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
if (document.location.search.includes('dark-theme=true')) {
|
2 |
+
document.body.classList.add('dark-theme');
|
3 |
+
}
|
4 |
+
|
5 |
+
let cursor = 0;
|
6 |
+
const RANGE = 5;
|
7 |
+
const LIMIT = 16_000;
|
8 |
+
|
9 |
+
const textToImage = async (text) => {
|
10 |
+
const inferenceResponse = await fetch(`infer_biggan?input=${text}`);
|
11 |
+
const inferenceBlob = await inferenceResponse.blob();
|
12 |
+
|
13 |
+
return URL.createObjectURL(inferenceBlob);
|
14 |
+
};
|
15 |
+
|
16 |
+
const translateText = async (text) => {
|
17 |
+
const inferResponse = await fetch(`infer_t5?input=${text}`);
|
18 |
+
const inferJson = await inferResponse.json();
|
19 |
+
|
20 |
+
return inferJson.output;
|
21 |
+
};
|
22 |
+
|
23 |
+
const queryDataset = async (start, end) => {
|
24 |
+
const queryResponse = await fetch(`query_emotion?start=${start}&end=${end}`);
|
25 |
+
const queryJson = await queryResponse.json();
|
26 |
+
|
27 |
+
return queryJson.output;
|
28 |
+
};
|
29 |
+
|
30 |
+
const updateTable = async (cursor, range = RANGE) => {
|
31 |
+
const table = document.querySelector('.dataset-output');
|
32 |
+
|
33 |
+
const fragment = new DocumentFragment();
|
34 |
+
|
35 |
+
const observations = await queryDataset(cursor, cursor + range);
|
36 |
+
|
37 |
+
for (const observation of observations) {
|
38 |
+
let row = document.createElement('tr');
|
39 |
+
let text = document.createElement('td');
|
40 |
+
let emotion = document.createElement('td');
|
41 |
+
|
42 |
+
text.textContent = observation.text;
|
43 |
+
emotion.textContent = observation.emotion;
|
44 |
+
|
45 |
+
row.appendChild(text);
|
46 |
+
row.appendChild(emotion);
|
47 |
+
fragment.appendChild(row);
|
48 |
+
}
|
49 |
+
|
50 |
+
table.innerHTML = '';
|
51 |
+
|
52 |
+
table.appendChild(fragment);
|
53 |
+
|
54 |
+
table.insertAdjacentHTML(
|
55 |
+
'afterbegin',
|
56 |
+
`<thead>
|
57 |
+
<tr>
|
58 |
+
<td>text</td>
|
59 |
+
<td>emotion</td>
|
60 |
+
</tr>
|
61 |
+
</thead>`
|
62 |
+
);
|
63 |
+
};
|
64 |
+
|
65 |
+
const imageGenSelect = document.getElementById('image-gen-input');
|
66 |
+
const imageGenImage = document.querySelector('.image-gen-output');
|
67 |
+
const textGenForm = document.querySelector('.text-gen-form');
|
68 |
+
const tableButtonPrev = document.querySelector('.table-previous');
|
69 |
+
const tableButtonNext = document.querySelector('.table-next');
|
70 |
+
|
71 |
+
imageGenSelect.addEventListener('change', async (event) => {
|
72 |
+
const value = event.target.value;
|
73 |
+
|
74 |
+
try {
|
75 |
+
imageGenImage.src = await textToImage(value);
|
76 |
+
imageGenImage.alt = value + ' generated from BigGAN AI model';
|
77 |
+
} catch (err) {
|
78 |
+
console.error(err);
|
79 |
+
}
|
80 |
+
});
|
81 |
+
|
82 |
+
textGenForm.addEventListener('submit', async (event) => {
|
83 |
+
event.preventDefault();
|
84 |
+
|
85 |
+
const textGenInput = document.getElementById('text-gen-input');
|
86 |
+
const textGenParagraph = document.querySelector('.text-gen-output');
|
87 |
+
|
88 |
+
try {
|
89 |
+
textGenParagraph.textContent = await translateText(textGenInput.value);
|
90 |
+
} catch (err) {
|
91 |
+
console.error(err);
|
92 |
+
}
|
93 |
+
});
|
94 |
+
|
95 |
+
tableButtonPrev.addEventListener('click', () => {
|
96 |
+
cursor = cursor > RANGE ? cursor - RANGE : 0;
|
97 |
+
|
98 |
+
if (cursor < RANGE) {
|
99 |
+
tableButtonPrev.classList.add('hidden');
|
100 |
+
}
|
101 |
+
if (cursor < LIMIT - RANGE) {
|
102 |
+
tableButtonNext.classList.remove('hidden');
|
103 |
+
}
|
104 |
+
|
105 |
+
updateTable(cursor);
|
106 |
+
});
|
107 |
+
|
108 |
+
tableButtonNext.addEventListener('click', () => {
|
109 |
+
cursor = cursor < LIMIT - RANGE ? cursor + RANGE : cursor;
|
110 |
+
|
111 |
+
if (cursor >= RANGE) {
|
112 |
+
tableButtonPrev.classList.remove('hidden');
|
113 |
+
}
|
114 |
+
if (cursor >= LIMIT - RANGE) {
|
115 |
+
tableButtonNext.classList.add('hidden');
|
116 |
+
}
|
117 |
+
|
118 |
+
updateTable(cursor);
|
119 |
+
});
|
120 |
+
|
121 |
+
textToImage(imageGenSelect.value)
|
122 |
+
.then((image) => (imageGenImage.src = image))
|
123 |
+
.catch(console.error);
|
124 |
+
|
125 |
+
updateTable(cursor)
|
126 |
+
.catch(console.error);
|
static/style.css
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
--text: hsl(0 0% 15%);
|
3 |
+
padding: 2.5rem;
|
4 |
+
font-family: sans-serif;
|
5 |
+
color: var(--text);
|
6 |
+
}
|
7 |
+
body.dark-theme {
|
8 |
+
--text: hsl(0 0% 90%);
|
9 |
+
background-color: hsl(223 39% 7%);
|
10 |
+
}
|
11 |
+
|
12 |
+
main {
|
13 |
+
max-width: 80rem;
|
14 |
+
text-align: center;
|
15 |
+
}
|
16 |
+
|
17 |
+
section {
|
18 |
+
display: flex;
|
19 |
+
flex-direction: column;
|
20 |
+
align-items: center;
|
21 |
+
}
|
22 |
+
|
23 |
+
a {
|
24 |
+
color: var(--text);
|
25 |
+
}
|
26 |
+
|
27 |
+
select, input, button, .text-gen-output {
|
28 |
+
padding: 0.5rem 1rem;
|
29 |
+
}
|
30 |
+
|
31 |
+
select, img, input {
|
32 |
+
margin: 0.5rem auto 1rem;
|
33 |
+
}
|
34 |
+
|
35 |
+
form {
|
36 |
+
width: 25rem;
|
37 |
+
margin: 0 auto;
|
38 |
+
}
|
39 |
+
|
40 |
+
input {
|
41 |
+
width: 70%;
|
42 |
+
}
|
43 |
+
|
44 |
+
button {
|
45 |
+
cursor: pointer;
|
46 |
+
}
|
47 |
+
|
48 |
+
.text-gen-output {
|
49 |
+
min-height: 1.2rem;
|
50 |
+
margin: 1rem;
|
51 |
+
border: 0.5px solid grey;
|
52 |
+
}
|
53 |
+
|
54 |
+
#dataset button {
|
55 |
+
width: 6rem;
|
56 |
+
margin: 0.5rem;
|
57 |
+
}
|
58 |
+
|
59 |
+
#dataset button.hidden {
|
60 |
+
visibility: hidden;
|
61 |
+
}
|
62 |
+
|
63 |
+
table {
|
64 |
+
max-width: 40rem;
|
65 |
+
text-align: left;
|
66 |
+
border-collapse: collapse;
|
67 |
+
}
|
68 |
+
|
69 |
+
thead {
|
70 |
+
font-weight: bold;
|
71 |
+
}
|
72 |
+
|
73 |
+
td {
|
74 |
+
padding: 0.5rem;
|
75 |
+
}
|
76 |
+
|
77 |
+
td:not(thead td) {
|
78 |
+
border: 0.5px solid grey;
|
79 |
+
}
|