Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoProcessor,AutoModelForCausalLM | |
import gradio as gr | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
processor=AutoProcessor.from_pretrained("saravanamax/image_captioning") | |
model=AutoModelForCausalLM.from_pretrained("saravanamax/image_captioning").to(device) | |
def generate_caption(image): | |
encoded=processor(images=image, return_tensors="pt").to(device) | |
pixels=encoded['pixel_values'].to(device) | |
with torch.no_grad(): | |
generated_ids=model.generate(pixel_values=pixels,max_length=10) | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_caption | |
demo=gr.Interface( | |
fn=generate_caption, | |
inputs=[ | |
gr.Image(type='pil'), | |
], | |
outputs= 'label', | |
examples=['demo.jpg','demo2.jpg','demo3.jpg'], | |
theme=gr.themes.Soft(primary_hue='purple',secondary_hue=gr.themes.colors.gray) | |
) | |
demo.launch(show_error=True) |