|
import asyncio |
|
import re |
|
from pydantic_ai.result import ResultData, RunResult |
|
import streamlit as st |
|
from pydantic_ai import Agent,RunContext, Tool |
|
from pydantic_ai.models.groq import GroqModel |
|
import nest_asyncio |
|
from pydantic_ai.messages import ModelMessage |
|
import pdfplumber |
|
import os |
|
from streamlit_pdf_viewer import pdf_viewer |
|
from dataclasses import dataclass |
|
|
|
|
|
|
|
|
|
api_key = os.getenv("api_key") |
|
|
|
data = [] |
|
|
|
|
|
model = GroqModel("llama3-groq-70b-8192-tool-use-preview", api_key = api_key) |
|
|
|
async def resume_AI(data): |
|
agent = Agent(model=model, |
|
|
|
system_prompt=( |
|
"You are an expert in making resume", |
|
"You have access to the resume text", |
|
"Also return data in markdown formate" |
|
) |
|
|
|
) |
|
|
|
result = agent.run_sync(user_prompt=f"Improve this resume: {data}") |
|
print(result.data) |
|
|
|
def extract_data(feed): |
|
|
|
with pdfplumber.open(feed) as pdf: |
|
pages = pdf.pages |
|
for p in pages: |
|
data.append(p.extract_text()) |
|
|
|
|
|
return None |
|
|
|
def ai_resume(data): |
|
asyncio.run(resume_AI(data=data)) |
|
|
|
def main(): |
|
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf") |
|
if uploaded_file is not None: |
|
extract_data(uploaded_file) |
|
binary_data = uploaded_file.getvalue() |
|
pdf_viewer(input=binary_data, |
|
width=700) |
|
if st.button("Improve Resume"): |
|
ai_resume(data) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
import asyncio |
|
nest_asyncio.apply() |
|
main() |