some debugging
Browse files
app.py
CHANGED
@@ -19,14 +19,22 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
|
19 |
|
20 |
@app.post('/image')
|
21 |
def read_image(image_file: bytes = File(...)):
|
22 |
-
|
23 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
24 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
25 |
|
26 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
27 |
outputs = model(**inputs)
|
28 |
target_sizes = torch.tensor([image.size[::-1]])
|
29 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return results
|
31 |
|
32 |
|
|
|
19 |
|
20 |
@app.post('/image')
|
21 |
def read_image(image_file: bytes = File(...)):
|
22 |
+
image = Image.open(BytesIO(image_file))
|
23 |
+
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
24 |
+
# image = Image.open(requests.get(url, stream=True).raw)
|
25 |
|
26 |
inputs = processor(images=image, return_tensors="pt")
|
27 |
+
print("image loaded")
|
28 |
outputs = model(**inputs)
|
29 |
target_sizes = torch.tensor([image.size[::-1]])
|
30 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
31 |
+
print("results pushed")
|
32 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
33 |
+
box = [round(i, 2) for i in box.tolist()]
|
34 |
+
print(
|
35 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
36 |
+
f"{round(score.item(), 3)} at location {box}"
|
37 |
+
)
|
38 |
return results
|
39 |
|
40 |
|