File size: 12,040 Bytes
4cdf136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b6298
4cdf136
 
 
 
 
 
 
 
 
14b6298
4cdf136
14b6298
4cdf136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b6298
 
 
 
 
 
 
 
 
 
 
 
 
 
4cdf136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b6298
4cdf136
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import io
import re
from collections.abc import Iterable

import pandas as pd
import streamlit as st
from pandas.api.types import is_bool_dtype, is_datetime64_any_dtype, is_numeric_dtype

GITHUB_URL = "https://github.com/msamwelmollel/Swahili_LLM_Leaderboard"
NON_BENCHMARK_COLS = ["Open?", "Publisher"]


def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame:
    """Extracts a table from a markdown text and formats it as a pandas DataFrame.
    Args:
        text (str): Markdown text containing a table.
    Returns:
        pd.DataFrame: Table as pandas DataFrame.
    """
    df = (
        pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1)
        .dropna(axis=1, how="all")  # drop empty columns
        .iloc[1:]  # drop first row which is the "----" separator of the original markdown table
        .sort_index(ascending=True)
        .apply(lambda x: x.str.strip() if x.dtype == "object" else x)
        .replace("", float("NaN"))
        .astype(float, errors="ignore")
    )

    # remove whitespace from column names and index
    df.columns = df.columns.str.strip()
    df.index = df.index.str.strip()
    df.index.name = df.index.name.strip()

    return df


def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str:
    """Extracts the markdown table from a multiline string.
    Args:
        multiline (str): content of README.md file.
        table_headline (str): Headline of the table in the README.md file.
        next_headline_start (str, optional): Start of the next headline. Defaults to "#".
    Returns:
        str: Markdown table.
    Raises:
        ValueError: If the table could not be found.
    """
    # extract everything between the table headline and the next headline
    table = []
    start = False
    for line in multiline.split("\n"):
        if line.startswith(table_headline):
            start = True
        elif line.startswith(next_headline_start):
            start = False
        elif start:
            table.append(line + "\n")

    if len(table) == 0:
        raise ValueError(f"Could not find table with headline '{table_headline}'")

    return "".join(table)


def remove_markdown_links(text: str) -> str:
    """Modifies a markdown text to remove all markdown links.
    Example: [DISPLAY](LINK) to DISPLAY
    First find all markdown links with regex.
    Then replace them with: $1
    Args:
        text (str): Markdown text containing markdown links
    Returns:
        str: Markdown text without markdown links.
    """

    # find all markdown links
    markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text)

    # remove link keep display text
    for display, link in markdown_links:
        text = text.replace(f"[{display}]({link})", display)

    return text


def filter_dataframe_by_row_and_columns(df: pd.DataFrame, ignore_columns: list[str] | None = None) -> pd.DataFrame:
    """
    Filter dataframe by the rows and columns to display.
    This does not select based on the values in the dataframe, but rather on the index and columns.
    Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
    Args:
        df (pd.DataFrame): Original dataframe
        ignore_columns (list[str], optional): Columns to ignore. Defaults to None.
    Returns:
        pd.DataFrame: Filtered dataframe
    """
    df = df.copy()

    if ignore_columns is None:
        ignore_columns = []

    modification_container = st.container()

    with modification_container:
        to_filter_index = st.multiselect("Filter by model:", sorted(df.index))
        if to_filter_index:
            df = pd.DataFrame(df.loc[to_filter_index])

        to_filter_columns = st.multiselect(
            "Filter by benchmark:", sorted([c for c in df.columns if c not in ignore_columns])
        )
        if to_filter_columns:
            df = pd.DataFrame(df[ignore_columns + to_filter_columns])

    return df


def filter_dataframe_by_column_values(df: pd.DataFrame) -> pd.DataFrame:
    """
    Filter dataframe by the values in the dataframe.
    Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
    Args:
        df (pd.DataFrame): Original dataframe
    Returns:
        pd.DataFrame: Filtered dataframe
    """
    df = df.copy()

    modification_container = st.container()

    with modification_container:
        to_filter_columns = st.multiselect("Filter results on:", df.columns)
        left, right = st.columns((1, 20))

        for column in to_filter_columns:
            if is_bool_dtype(df[column]):
                user_bool_input = right.checkbox(f"{column}", value=True)
                df = df[df[column] == user_bool_input]

            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())

                if (_min != _max) and pd.notna(_min) and pd.notna(_max):
                    step = 0.01
                    user_num_input = right.slider(
                        f"Values for {column}:",
                        min_value=round(_min - step, 2),
                        max_value=round(_max + step, 2),
                        value=(_min, _max),
                        step=step,
                    )
                    df = df[df[column].between(*user_num_input)]

            elif is_datetime64_any_dtype(df[column]):
                user_date_input = right.date_input(
                    f"Values for {column}:",
                    value=(
                        df[column].min(),
                        df[column].max(),
                    ),
                )
                if isinstance(user_date_input, Iterable) and len(user_date_input) == 2:
                    user_date_input_datetime = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input_datetime
                    df = df.loc[df[column].between(start_date, end_date)]

            else:
                selected_values = right.multiselect(
                    f"Values for {column}:",
                    sorted(df[column].unique()),
                )

                if selected_values:
                    df = df[df[column].isin(selected_values)]

    return df


def setup_basic():
    title = "πŸ† LLM-Leaderboard"

    st.set_page_config(
        page_title=title,
        page_icon="πŸ†",
        layout="wide",
    )
    st.title(title)

    st.markdown(
        "A joint community effort to create one central leaderboard for LLMs."
        f" Visit [swahili-llm-leaderboard]({GITHUB_URL}) to contribute.  \n"
        'We refer to a model being "open" if it can be locally deployed and used for commercial purposes.'
    )


def setup_leaderboard(readme: str):
    leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard")
    leaderboard_table = remove_markdown_links(leaderboard_table)
    df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
    df_leaderboard["Open?"] = df_leaderboard["Open?"].map({"yes": 1, "no": 0}).astype(bool)

    st.markdown("## Leaderboard")
    modify = st.checkbox("Add filters")
    clear_empty_entries = st.checkbox("Clear empty entries", value=True)

    if modify:
        df_leaderboard = filter_dataframe_by_row_and_columns(df_leaderboard, ignore_columns=NON_BENCHMARK_COLS)
        df_leaderboard = filter_dataframe_by_column_values(df_leaderboard)

    if clear_empty_entries:
        df_leaderboard = df_leaderboard.dropna(axis=1, how="all")
        benchmark_columns = [c for c in df_leaderboard.columns if df_leaderboard[c].dtype == float]
        rows_wo_any_benchmark = df_leaderboard[benchmark_columns].isna().all(axis=1)
        df_leaderboard = df_leaderboard[~rows_wo_any_benchmark]

    st.dataframe(df_leaderboard)

    st.download_button(
        "Download current selection as .html",
        df_leaderboard.to_html().encode("utf-8"),
        "leaderboard.html",
        "text/html",
        key="download-html",
    )

    st.download_button(
        "Download current selection as .csv",
        df_leaderboard.to_csv().encode("utf-8"),
        "leaderboard.csv",
        "text/csv",
        key="download-csv",
    )


def setup_benchmarks(readme: str):
    benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks")
    df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)

    st.markdown("## Covered Benchmarks")

    selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique())
    df_selected = df_benchmarks.loc[selected_benchmark]
    text = [
        f"Name: {selected_benchmark}",
    ]
    for key in df_selected.keys():
        text.append(f"{key}: {df_selected[key]} ")
    st.markdown("  \n".join(text))


def setup_sources():
    st.markdown("## Sources")
    st.markdown(
        "The results of this leaderboard are collected from the individual papers and published results of the model "
        "authors. If you are interested in the sources of each individual reported model value, please visit the "
        f"[llm-leaderboard]({GITHUB_URL}) repository."
    )
    st.markdown(
        """
    Special thanks to the following pages:
    - [MosaicML - Model benchmarks](https://www.mosaicml.com/blog/mpt-7b)
    - [lmsys.org - Chatbot Arena benchmarks](https://lmsys.org/blog/2023-05-03-arena/)
    - [Papers With Code](https://paperswithcode.com/)
    - [Stanford HELM](https://crfm.stanford.edu/helm/latest/)
    - [HF Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
    """
    )

def setup_Contribution():
    st.markdown("## How to Contribute")

    markdown_content = """
    - Model name (don't forget the links):
      - Filling in missing entries
      - Adding a new model as a new row to the leaderboard. Please keep the descending order.
      - Adding a new benchmark as a new column in the leaderboard and adding the benchmark to the benchmarks table. Please keep the descending order.
    - Code work:
      - Improving the existing code
      - Requesting and implementing new features
    """
    st.markdown(markdown_content)
    
def setup_Sponsorship():
    st.markdown("## Sponsorship")
    st.markdown(
        # "The results of this leaderboard are collected from the individual papers and published results of the model "
        # "authors. If you are interested in the sources of each individual reported model value, please visit the "
        # f"[llm-leaderboard]({GITHUB_URL}) repository."
        "The benchmark is English-based, and we need support translating it into Swahili." 
        "We welcome sponsorships to help advance this endeavor."
        "Your sponsorship would facilitate this essential translation effort, bridging language barriers and making the benchmark "
        "accessible to a broader audience. We're grateful for the dedication shown by our collaborators and aim to extend this impact "
        "further with the support of sponsors committed to advancing language technologies."
        "Any support please reach me: [email protected]"
    )


def setup_disclaimer():
    st.markdown("## Disclaimer")
    st.markdown(
        "Above information may be wrong. If you want to use a published model for commercial use, please contact a "
        "lawyer."
    )


def setup_footer():
    st.markdown(
        """
        ---
        Made with ❀️ by the awesome open-source community from all over 🌍.
        """
    )


def main():
    setup_basic()

    with open("README.md", "r") as f:
        readme = f.read()
  

    setup_leaderboard(readme)
    # setup_benchmarks(readme)
    # setup_sources()
    # setup_disclaimer()
    # setup_footer()
    setup_Contribution()
    setup_Sponsorship()


if __name__ == "__main__":
    main()