Spaces:
Running
Running
File size: 6,593 Bytes
3e43423 6d787c4 2ef57a2 c670c44 6d787c4 c670c44 6d787c4 3e43423 6d787c4 0212ece 6d787c4 69db194 6d787c4 c670c44 4779900 6d787c4 0212ece 6d787c4 0212ece 6d787c4 2ef57a2 0212ece 2ef57a2 6d787c4 2ef57a2 6d787c4 0212ece 6d787c4 2ef57a2 6d787c4 0212ece 6d787c4 2ef57a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from datasets import load_dataset, get_dataset_config_names
from functools import partial
from pandas import DataFrame
from PIL import Image
import gradio as gr
import numpy as np
import tqdm
import json
import os
DATASET = "satellogic/EarthView"
DEBUG = False
sets = {
"satellogic": {
"shards" : 3676,
},
"sentinel_1": {
"shards" : 1763,
},
"neon": {
"config" : "default",
"shards" : 607,
"path" : "data",
}
}
def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
if shard == -1:
# Trick to open the whole dataset
data_files = None
shards = 100
else:
config = sets[set_name].get("config", set_name)
shards = sets[set_name]["shards"]
path = sets[set_name].get("path", set_name)
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
if DEBUG:
ds = lambda:None
ds.n_shards = 1234
dsi = range(100)
else:
ds = load_dataset(
dataset,
config,
split=split,
cache_dir="dataset",
data_files=data_files,
streaming=True,
token=os.environ.get("HF_TOKEN", None))
dsi = iter(ds)
state["config"] = config
state["dsi"] = dsi
return (
gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
*get_images(batch_size, state),
state
)
def item_to_images(config, item):
metadata = item["metadata"]
if type(metadata) == str:
metadata = json.loads(metadata)
item = {
k: np.asarray(v).astype("uint8")
for k,v in item.items()
if k != "metadata"
}
item["metadata"] = metadata
if config == "satellogic":
item["rgb"] = [
Image.fromarray(image.transpose(1,2,0))
for image in item["rgb"]
]
item["1m"] = [
Image.fromarray(image[0,:,:])
for image in item["1m"]
]
elif config == "sentinel_1":
# Mapping of V and H to RGB. May not be correct
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
i10m = item["10m"]
i10m = np.concatenate(
( i10m,
np.expand_dims(
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
1
).astype("uint8")
),
1
)
item["10m"] = [
Image.fromarray(image.transpose(1,2,0))
for image in i10m
]
elif config == "default":
item["rgb"] = [
Image.fromarray(image.transpose(1,2,0))
for image in item["rgb"]
]
item["chm"] = [
Image.fromarray(image[0])
for image in item["chm"]
]
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
# It just averages each 1/3 of the bads and assigns it to a channel
item["1m"] = [
Image.fromarray(
np.concatenate((
np.expand_dims(np.average(image[:124],0),2),
np.expand_dims(np.average(image[124:247],0),2),
np.expand_dims(np.average(image[247:],0),2))
,2).astype("uint8"))
for image in item["1m"]
]
return item
def get_images(batch_size, state):
config = state["config"]
images = []
metadatas = []
for i in tqdm.trange(batch_size, desc=f"Getting images"):
if DEBUG:
image = np.random.randint(0,255,(384,384,3))
metadata = {"bounds":[[1,1,4,4]], }
else:
try:
item = next(state["dsi"])
except StopIteration:
break
metadata = item["metadata"]
item = item_to_images(config, item)
if config == "satellogic":
images.extend(item["rgb"])
images.extend(item["1m"])
if config == "sentinel_1":
images.extend(item["10m"])
if config == "default":
images.extend(item["rgb"])
images.extend(item["chm"])
images.extend(item["1m"])
metadatas.append(item["metadata"])
return images, DataFrame(metadatas)
def update_shape(rows, columns):
return gr.update(rows=rows, columns=columns)
def new_state():
return gr.State({})
if __name__ == "__main__":
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
state = new_state()
gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
batch_size = gr.Number(10, label = "Batch Size", render=False)
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
table = gr.DataFrame(render = False)
# headers=["Index","TimeStamp","Bounds","CRS"],
gallery = gr.Gallery(
label=DATASET,
interactive=False,
columns=5, rows=2, render=False)
with gr.Row():
dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
config = gr.Dropdown(choices=sets.keys(), label="Config", value="satellogic", )
split = gr.Textbox(label="Split", value="train")
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
gr.Button("Load (minutes)").click(
open_dataset,
inputs=[dataset, config, split, batch_size, state, initial_shard],
outputs=[shard, gallery, table, state])
gallery.render()
with gr.Row():
batch_size.render()
rows = gr.Number(2, label="Rows")
columns = gr.Number(5, label="Coluns")
rows.change(update_shape, [rows, columns], [gallery])
columns.change(update_shape, [rows, columns], [gallery])
with gr.Row():
shard.render()
shard.release(
open_dataset,
inputs=[dataset, config, split, batch_size, state, shard],
outputs=[shard, gallery, table, state])
btn = gr.Button("Next Batch (same shard)", scale=0)
btn.click(get_images, [batch_size, state], [gallery, table])
btn.click()
table.render()
demo.launch(show_api=False)
|