gera-richarte's picture
no more (old) skip code
86c8985
raw
history blame
5.25 kB
from datasets import load_dataset, IterableDataset
from functools import partial
from pandas import DataFrame
import gradio as gr
import numpy as np
import tqdm
import json
import os
DEBUG = False
sets = {
"satellogic": {
"shards" : 3676,
},
"sentinel_1": {
"shards" : 1763,
},
"neon": {
"config" : "default",
"shards" : 607,
"path" : "data",
}
}
def open_dataset(dataset, set_name, split, batch_size, shard = -1):
# I should really move ds.config_name and dsi to a gr.State()
global dsi, ds
if shard == -1:
data_files = None
shards = 100
else:
config = sets[set_name].get("config", set_name)
shards = sets[set_name]["shards"]
path = sets[set_name].get("path", set_name)
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
if DEBUG:
ds = lambda:None
ds.n_shards = 1234
dsi = range(100)
else:
ds = load_dataset(
dataset,
config,
split=split,
cache_dir="dataset",
data_files=data_files,
streaming=True,
token=os.environ.get("HF_TOKEN", None))
dsi = iter(ds)
return (
gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
*get_images(batch_size)
)
def get_images(batch_size):
global dsi, ds
items = []
metadatas = []
for i in tqdm.trange(batch_size, desc=f"Getting images"):
if DEBUG:
image = np.random.randint(0,255,(384,384,3))
metadata = {"bounds":[[1,1,4,4]], }
else:
try:
item = next(dsi)
except StopIteration:
break
metadata = item["metadata"]
if ds.config_name == "satellogic":
# image = (np.asarray(item["1m"])).astype("uint8")
# items.append(image[0,0,:,:])
image = np.asarray(item["rgb"][0]).astype(np.uint8)
items.append(image.transpose(1,2,0))
if ds.config_name == "sentinel_1":
metadata = json.loads(metadata)
data = np.asarray(item["10m"])
for i in range(data.shape[0]):
# Mapping of V and H to RGB. May not be correct
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
image = np.zeros((3,384,384), "uint8")
image[0] = data[i][0]
image[1] = data[i][1]
image[2] = (image[0]/(image[1]+0.1))*256
items.append(image.transpose(1,2,0))
if ds.config_name == "default":
dataRGB = np.asarray(item["rgb"]).astype("uint8")
dataCHM = np.asarray(item["chm"]).astype("uint8")
data1m = np.asarray(item["1m"]).astype("uint8")
for i in range(dataRGB.shape[0]):
image = dataRGB[i,:,:,:]
items.append(image.transpose(1,2,0))
image = dataCHM[i,0,:,:]
items.append(image)
image = data1m[i,0,:,:]
items.append(image)
metadatas.append(metadata)
return items, DataFrame(metadatas)
def update_shape(rows, columns):
return gr.update(rows=rows, columns=columns)
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
gr.Markdown("# [satellogic/EarthView](https://huggingface.co/datasets/satellogic/EarthView) Dataset Viewer")
batch_size = gr.Number(10, label = "Batch Size", render=False)
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
table = gr.DataFrame(render = False)
# headers=["Index","TimeStamp","Bounds","CRS"],
gallery = gr.Gallery(
label="satellogic/EarthView",
interactive=False,
columns=5, rows=2, render=False)
with gr.Row():
dataset = gr.Textbox(label="Dataset", value="satellogic/EarthView")
config = gr.Dropdown(choices=["satellogic", "sentinel_1", "neon"], label="Subset", value="satellogic", )
split = gr.Textbox(label="Split", value="train")
initial_shard = gr.Number(label = "Initial shard", value=0)
gr.Button("Load (minutes)").click(
open_dataset,
inputs=[dataset, config, split, batch_size, initial_shard],
outputs=[shard, gallery, table])
gallery.render()
with gr.Row():
batch_size.render()
rows = gr.Number(2, label="Rows")
columns = gr.Number(5, label="Coluns")
rows.change(update_shape, [rows, columns], [gallery])
columns.change(update_shape, [rows, columns], [gallery])
with gr.Row():
shard.render()
shard.release(
open_dataset,
inputs=[dataset, config, split, batch_size, shard],
outputs=[shard, gallery, table])
btn = gr.Button("Get More Images", scale=0)
btn.click(get_images, [batch_size], [gallery, table])
btn.click()
table.render()
demo.launch(show_api=False)