Yurii Paniv commited on
Commit
ea3c62a
·
1 Parent(s): 36ba107

Use interface by @theodotus

Browse files
Files changed (1) hide show
  1. app.py +7 -62
app.py CHANGED
@@ -1,34 +1,8 @@
1
  import ctranslate2
2
  from transformers import AutoTokenizer
3
 
4
- import threading
5
  import gradio as gr
6
 
7
- from typing import Optional
8
- from queue import Queue
9
-
10
-
11
-
12
-
13
- class TokenIteratorStreamer:
14
- def __init__(self, end_token_id: int, timeout: Optional[float] = None):
15
- self.end_token_id = end_token_id
16
- self.queue = Queue()
17
- self.timeout = timeout
18
-
19
- def put(self, token: int):
20
- self.queue.put(token, timeout=self.timeout)
21
-
22
- def __iter__(self):
23
- return self
24
-
25
- def __next__(self):
26
- token = self.queue.get(timeout=self.timeout)
27
- if token == self.end_token_id:
28
- raise StopIteration()
29
- else:
30
- return token
31
-
32
 
33
 
34
  def generate_prompt(history):
@@ -39,13 +13,8 @@ def generate_prompt(history):
39
  tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
40
  return tokens
41
 
42
- def generate(streamer, history):
43
- def stepResultCallback(result):
44
- streamer.put(result.token_id)
45
- if result.is_last and (result.token_id != end_token_id):
46
- streamer.put(end_token_id)
47
- print(f"step={result.step}, batch_id={result.batch_id}, token={result.token}")
48
-
49
  tokens = generate_prompt(history)
50
 
51
  results = translator.translate_batch(
@@ -53,43 +22,19 @@ def generate(streamer, history):
53
  beam_size=1,
54
  max_decoding_length = 256,
55
  repetition_penalty = 1.8,
56
- callback = stepResultCallback
57
  )
58
- return results
 
59
 
60
 
61
 
62
- translator = ctranslate2.Translator("model", intra_threads=2)
63
  tokenizer = AutoTokenizer.from_pretrained("DKYoon/mt5-xl-lm-adapt")
64
  end_token = "</s>"
65
  end_token_id = tokenizer.encode(end_token)[0]
66
 
67
 
68
- with gr.Blocks() as demo:
69
- chatbot = gr.Chatbot()
70
- msg = gr.Textbox()
71
- clear = gr.Button("Clear")
72
-
73
- def user(user_message, history):
74
- return "", history + [[user_message, ""]]
75
-
76
- def bot(history):
77
- bot_message_tokens = []
78
- streamer = TokenIteratorStreamer(end_token_id = end_token_id)
79
- generation_thread = threading.Thread(target=generate, args=(streamer, history))
80
- generation_thread.start()
81
-
82
- for token in streamer:
83
- bot_message_tokens.append(token)
84
- history[-1][1] = tokenizer.decode(bot_message_tokens)
85
- yield history
86
- generation_thread.join()
87
-
88
- msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
89
- bot, chatbot, chatbot
90
- )
91
- clear.click(lambda: None, None, chatbot, queue=False)
92
-
93
- demo.queue()
94
  if __name__ == "__main__":
95
  demo.launch()
 
1
  import ctranslate2
2
  from transformers import AutoTokenizer
3
 
 
4
  import gradio as gr
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
 
8
  def generate_prompt(history):
 
13
  tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
14
  return tokens
15
 
16
+ def generate(question):
17
+ history = [[question, ""]]
 
 
 
 
 
18
  tokens = generate_prompt(history)
19
 
20
  results = translator.translate_batch(
 
22
  beam_size=1,
23
  max_decoding_length = 256,
24
  repetition_penalty = 1.8,
 
25
  )
26
+ answer = tokenizer.convert_tokens_to_string(results[0].hypotheses[0])
27
+ return answer
28
 
29
 
30
 
31
+ translator = ctranslate2.Translator("model")
32
  tokenizer = AutoTokenizer.from_pretrained("DKYoon/mt5-xl-lm-adapt")
33
  end_token = "</s>"
34
  end_token_id = tokenizer.encode(end_token)[0]
35
 
36
 
37
+ demo = gr.Interface(fn=generate, description="Space by @theodotus. Source: https://huggingface.co/spaces/theodotus/pythia-uk", inputs="text", outputs="text")
38
+ demo.queue(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  if __name__ == "__main__":
40
  demo.launch()