File size: 14,066 Bytes
bd7e8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import functools

import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras import layers

from .blocks.attentions import SAM
from .blocks.bottleneck import BottleneckBlock
from .blocks.misc_gating import CrossGatingBlock
from .blocks.others import UpSampleRatio
from .blocks.unet import UNetDecoderBlock, UNetEncoderBlock
from .layers import Resizing

Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same")
Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same")
ConvT_up = functools.partial(
    layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same"
)
Conv_down = functools.partial(
    layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same"
)


def MAXIM(
    features: int = 64,
    depth: int = 3,
    num_stages: int = 2,
    num_groups: int = 1,
    use_bias: bool = True,
    num_supervision_scales: int = 1,
    lrelu_slope: float = 0.2,
    use_global_mlp: bool = True,
    use_cross_gating: bool = True,
    high_res_stages: int = 2,
    block_size_hr=(16, 16),
    block_size_lr=(8, 8),
    grid_size_hr=(16, 16),
    grid_size_lr=(8, 8),
    num_bottleneck_blocks: int = 1,
    block_gmlp_factor: int = 2,
    grid_gmlp_factor: int = 2,
    input_proj_factor: int = 2,
    channels_reduction: int = 4,
    num_outputs: int = 3,
    dropout_rate: float = 0.0,
):
    """The MAXIM model function with multi-stage and multi-scale supervision.

    For more model details, please check the CVPR paper:
    MAXIM: MUlti-Axis MLP for Image Processing (https://arxiv.org/abs/2201.02973)

    Attributes:
      features: initial hidden dimension for the input resolution.
      depth: the number of downsampling depth for the model.
      num_stages: how many stages to use. It will also affects the output list.
      num_groups: how many blocks each stage contains.
      use_bias: whether to use bias in all the conv/mlp layers.
      num_supervision_scales: the number of desired supervision scales.
      lrelu_slope: the negative slope parameter in leaky_relu layers.
      use_global_mlp: whether to use the multi-axis gated MLP block (MAB) in each
        layer.
      use_cross_gating: whether to use the cross-gating MLP block (CGB) in the
        skip connections and multi-stage feature fusion layers.
      high_res_stages: how many stages are specificied as high-res stages. The
        rest (depth - high_res_stages) are called low_res_stages.
      block_size_hr: the block_size parameter for high-res stages.
      block_size_lr: the block_size parameter for low-res stages.
      grid_size_hr: the grid_size parameter for high-res stages.
      grid_size_lr: the grid_size parameter for low-res stages.
      num_bottleneck_blocks: how many bottleneck blocks.
      block_gmlp_factor: the input projection factor for block_gMLP layers.
      grid_gmlp_factor: the input projection factor for grid_gMLP layers.
      input_proj_factor: the input projection factor for the MAB block.
      channels_reduction: the channel reduction factor for SE layer.
      num_outputs: the output channels.
      dropout_rate: Dropout rate.

    Returns:
      The output contains a list of arrays consisting of multi-stage multi-scale
      outputs. For example, if num_stages = num_supervision_scales = 3 (the
      model used in the paper), the output specs are: outputs =
      [[output_stage1_scale1, output_stage1_scale2, output_stage1_scale3],
       [output_stage2_scale1, output_stage2_scale2, output_stage2_scale3],
       [output_stage3_scale1, output_stage3_scale2, output_stage3_scale3],]
      The final output can be retrieved by outputs[-1][-1].
    """

    def apply(x):
        n, h, w, c = (
            K.int_shape(x)[0],
            K.int_shape(x)[1],
            K.int_shape(x)[2],
            K.int_shape(x)[3],
        )  # input image shape

        shortcuts = []
        shortcuts.append(x)

        # Get multi-scale input images
        for i in range(1, num_supervision_scales):
            resizing_layer = Resizing(
                height=h // (2 ** i),
                width=w // (2 ** i),
                method="nearest",
                antialias=True,  # Following `jax.image.resize()`.
                name=f"initial_resizing_{K.get_uid('Resizing')}",
            )
            shortcuts.append(resizing_layer(x))

        # store outputs from all stages and all scales
        # Eg, [[(64, 64, 3), (128, 128, 3), (256, 256, 3)],   # Stage-1 outputs
        #      [(64, 64, 3), (128, 128, 3), (256, 256, 3)],]  # Stage-2 outputs
        outputs_all = []
        sam_features, encs_prev, decs_prev = [], [], []

        for idx_stage in range(num_stages):
            # Input convolution, get multi-scale input features
            x_scales = []
            for i in range(num_supervision_scales):
                x_scale = Conv3x3(
                    filters=(2 ** i) * features,
                    use_bias=use_bias,
                    name=f"stage_{idx_stage}_input_conv_{i}",
                )(shortcuts[i])

                # If later stages, fuse input features with SAM features from prev stage
                if idx_stage > 0:
                    # use larger blocksize at high-res stages
                    if use_cross_gating:
                        block_size = (
                            block_size_hr if i < high_res_stages else block_size_lr
                        )
                        grid_size = grid_size_hr if i < high_res_stages else block_size_lr
                        x_scale, _ = CrossGatingBlock(
                            features=(2 ** i) * features,
                            block_size=block_size,
                            grid_size=grid_size,
                            dropout_rate=dropout_rate,
                            input_proj_factor=input_proj_factor,
                            upsample_y=False,
                            use_bias=use_bias,
                            name=f"stage_{idx_stage}_input_fuse_sam_{i}",
                        )(x_scale, sam_features.pop())
                    else:
                        x_scale = Conv1x1(
                            filters=(2 ** i) * features,
                            use_bias=use_bias,
                            name=f"stage_{idx_stage}_input_catconv_{i}",
                        )(tf.concat([x_scale, sam_features.pop()], axis=-1))

                x_scales.append(x_scale)

            # start encoder blocks
            encs = []
            x = x_scales[0]  # First full-scale input feature

            for i in range(depth):  # 0, 1, 2
                # use larger blocksize at high-res stages, vice versa.
                block_size = block_size_hr if i < high_res_stages else block_size_lr
                grid_size = grid_size_hr if i < high_res_stages else block_size_lr
                use_cross_gating_layer = True if idx_stage > 0 else False

                # Multi-scale input if multi-scale supervision
                x_scale = x_scales[i] if i < num_supervision_scales else None

                # UNet Encoder block
                enc_prev = encs_prev.pop() if idx_stage > 0 else None
                dec_prev = decs_prev.pop() if idx_stage > 0 else None

                x, bridge = UNetEncoderBlock(
                    num_channels=(2 ** i) * features,
                    num_groups=num_groups,
                    downsample=True,
                    lrelu_slope=lrelu_slope,
                    block_size=block_size,
                    grid_size=grid_size,
                    block_gmlp_factor=block_gmlp_factor,
                    grid_gmlp_factor=grid_gmlp_factor,
                    input_proj_factor=input_proj_factor,
                    channels_reduction=channels_reduction,
                    use_global_mlp=use_global_mlp,
                    dropout_rate=dropout_rate,
                    use_bias=use_bias,
                    use_cross_gating=use_cross_gating_layer,
                    name=f"stage_{idx_stage}_encoder_block_{i}",
                )(x, skip=x_scale, enc=enc_prev, dec=dec_prev)

                # Cache skip signals
                encs.append(bridge)

            # Global MLP bottleneck blocks
            for i in range(num_bottleneck_blocks):
                x = BottleneckBlock(
                    block_size=block_size_lr,
                    grid_size=block_size_lr,
                    features=(2 ** (depth - 1)) * features,
                    num_groups=num_groups,
                    block_gmlp_factor=block_gmlp_factor,
                    grid_gmlp_factor=grid_gmlp_factor,
                    input_proj_factor=input_proj_factor,
                    dropout_rate=dropout_rate,
                    use_bias=use_bias,
                    channels_reduction=channels_reduction,
                    name=f"stage_{idx_stage}_global_block_{i}",
                )(x)
            # cache global feature for cross-gating
            global_feature = x

            # start cross gating. Use multi-scale feature fusion
            skip_features = []
            for i in reversed(range(depth)):  # 2, 1, 0
                # use larger blocksize at high-res stages
                block_size = block_size_hr if i < high_res_stages else block_size_lr
                grid_size = grid_size_hr if i < high_res_stages else block_size_lr

                # get additional multi-scale signals
                signal = tf.concat(
                    [
                        UpSampleRatio(
                            num_channels=(2 ** i) * features,
                            ratio=2 ** (j - i),
                            use_bias=use_bias,
                            name=f"UpSampleRatio_{K.get_uid('UpSampleRatio')}",
                        )(enc)
                        for j, enc in enumerate(encs)
                    ],
                    axis=-1,
                )

                # Use cross-gating to cross modulate features
                if use_cross_gating:
                    skips, global_feature = CrossGatingBlock(
                        features=(2 ** i) * features,
                        block_size=block_size,
                        grid_size=grid_size,
                        input_proj_factor=input_proj_factor,
                        dropout_rate=dropout_rate,
                        upsample_y=True,
                        use_bias=use_bias,
                        name=f"stage_{idx_stage}_cross_gating_block_{i}",
                    )(signal, global_feature)
                else:
                    skips = Conv1x1(
                        filters=(2 ** i) * features, use_bias=use_bias, name="Conv_0"
                    )(signal)
                    skips = Conv3x3(
                        filters=(2 ** i) * features, use_bias=use_bias, name="Conv_1"
                    )(skips)

                skip_features.append(skips)

            # start decoder. Multi-scale feature fusion of cross-gated features
            outputs, decs, sam_features = [], [], []
            for i in reversed(range(depth)):
                # use larger blocksize at high-res stages
                block_size = block_size_hr if i < high_res_stages else block_size_lr
                grid_size = grid_size_hr if i < high_res_stages else block_size_lr

                # get multi-scale skip signals from cross-gating block
                signal = tf.concat(
                    [
                        UpSampleRatio(
                            num_channels=(2 ** i) * features,
                            ratio=2 ** (depth - j - 1 - i),
                            use_bias=use_bias,
                            name=f"UpSampleRatio_{K.get_uid('UpSampleRatio')}",
                        )(skip)
                        for j, skip in enumerate(skip_features)
                    ],
                    axis=-1,
                )

                # Decoder block
                x = UNetDecoderBlock(
                    num_channels=(2 ** i) * features,
                    num_groups=num_groups,
                    lrelu_slope=lrelu_slope,
                    block_size=block_size,
                    grid_size=grid_size,
                    block_gmlp_factor=block_gmlp_factor,
                    grid_gmlp_factor=grid_gmlp_factor,
                    input_proj_factor=input_proj_factor,
                    channels_reduction=channels_reduction,
                    use_global_mlp=use_global_mlp,
                    dropout_rate=dropout_rate,
                    use_bias=use_bias,
                    name=f"stage_{idx_stage}_decoder_block_{i}",
                )(x, bridge=signal)

                # Cache decoder features for later-stage's usage
                decs.append(x)

                # output conv, if not final stage, use supervised-attention-block.
                if i < num_supervision_scales:
                    if idx_stage < num_stages - 1:  # not last stage, apply SAM
                        sam, output = SAM(
                            num_channels=(2 ** i) * features,
                            output_channels=num_outputs,
                            use_bias=use_bias,
                            name=f"stage_{idx_stage}_supervised_attention_module_{i}",
                        )(x, shortcuts[i])
                        outputs.append(output)
                        sam_features.append(sam)
                    else:  # Last stage, apply output convolutions
                        output = Conv3x3(
                            num_outputs,
                            use_bias=use_bias,
                            name=f"stage_{idx_stage}_output_conv_{i}",
                        )(x)
                        output = output + shortcuts[i]
                        outputs.append(output)
            # Cache encoder and decoder features for later-stage's usage
            encs_prev = encs[::-1]
            decs_prev = decs

            # Store outputs
            outputs_all.append(outputs)
        return outputs_all

    return apply