|
import functools |
|
|
|
import tensorflow as tf |
|
from tensorflow.keras import backend as K |
|
from tensorflow.keras import layers |
|
|
|
from ..layers import Resizing |
|
|
|
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same") |
|
|
|
|
|
def MlpBlock( |
|
mlp_dim: int, |
|
dropout_rate: float = 0.0, |
|
use_bias: bool = True, |
|
name: str = "mlp_block", |
|
): |
|
"""A 1-hidden-layer MLP block, applied over the last dimension.""" |
|
|
|
def apply(x): |
|
d = K.int_shape(x)[-1] |
|
x = layers.Dense(mlp_dim, use_bias=use_bias, name=f"{name}_Dense_0")(x) |
|
x = tf.nn.gelu(x, approximate=True) |
|
x = layers.Dropout(dropout_rate)(x) |
|
x = layers.Dense(d, use_bias=use_bias, name=f"{name}_Dense_1")(x) |
|
return x |
|
|
|
return apply |
|
|
|
|
|
def UpSampleRatio( |
|
num_channels: int, ratio: float, use_bias: bool = True, name: str = "upsample" |
|
): |
|
"""Upsample features given a ratio > 0.""" |
|
|
|
def apply(x): |
|
n, h, w, c = ( |
|
K.int_shape(x)[0], |
|
K.int_shape(x)[1], |
|
K.int_shape(x)[2], |
|
K.int_shape(x)[3], |
|
) |
|
|
|
|
|
x = Resizing( |
|
height=int(h * ratio), |
|
width=int(w * ratio), |
|
method="bilinear", |
|
antialias=True, |
|
name=f"{name}_resizing_{K.get_uid('Resizing')}", |
|
)(x) |
|
|
|
x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x) |
|
return x |
|
|
|
return apply |
|
|