File size: 1,485 Bytes
e348efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9814f59
e348efe
 
 
 
 
 
9814f59
 
 
 
 
e348efe
 
 
 
9814f59
 
 
 
81a5edc
9814f59
 
81a5edc
9814f59
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr

from langchain.document_loaders import OnlinePDFLoader

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)

from langchain.llms import HuggingFaceHub
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300})

from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()

from langchain.vectorstores import Chroma

from langchain.chains import RetrievalQA

def pdf_changes(pdf_doc):
    loader = OnlinePDFLoader(pdf_doc)
    documents = loader.load()
    texts = text_splitter.split_documents(documents)
    db = Chroma.from_documents(texts, embeddings)
    retriever = db.as_retriever()
    qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True)
    return "Ready"

def infer(question):
    
    query = question
    result = qa({"query": query})

    return result

with gr.Blocks() as demo:
    with gr.Column():
        pdf_doc = gr.File(label="Load a pdf")
        langchain_status = gr.Textbox()
        
        question = gr.Textbox(label="Your Question")
        answer = gr.Textbox(label="Anwser")
        
        submit_button = gr.Button("Send Question")
    
    pdf_doc.change(pdf_changes, pdf_doc, langchain_status, queue=False)
    submit_button.click(infer, inputs=[question], outputs=[answer])
        

demo.launch()