File size: 3,751 Bytes
e348efe
 
 
 
 
 
 
 
 
 
 
 
 
310367e
 
 
3404f46
 
310367e
4228512
310367e
7432eb1
e348efe
3fa6349
e348efe
310367e
e348efe
 
ec3e3dc
1fed219
310367e
9814f59
 
c96ea95
 
 
 
 
01127eb
a03faf2
c96ea95
 
9814f59
 
 
e348efe
 
 
 
addace4
 
 
 
 
e844d1b
addace4
 
 
d98a596
addace4
 
 
 
90e7fa2
addace4
 
e844d1b
90e7fa2
e844d1b
2809fb8
90e7fa2
3404f46
90e7fa2
e844d1b
 
0cc73a7
 
4228512
549c8fd
 
b3d631d
c96ea95
 
0cc73a7
 
 
9814f59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr

from langchain.document_loaders import OnlinePDFLoader

from langchain.text_splitter import CharacterTextSplitter

from langchain.llms import HuggingFaceHub

from langchain.embeddings import HuggingFaceHubEmbeddings

from langchain.vectorstores import Chroma

from langchain.chains import RetrievalQA



def loading_pdf():
    return "Loading..."

def pdf_changes(pdf_doc, repo_id):
    
    loader = OnlinePDFLoader(pdf_doc.name)
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0)
    texts = text_splitter.split_documents(documents)
    embeddings = HuggingFaceHubEmbeddings()
    db = Chroma.from_documents(texts, embeddings)
    retriever = db.as_retriever()
    llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":250})
    global qa 
    qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
    return "Ready"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0])
    history[-1][1] = response['result']
    return history

def infer(question):
    
    query = question
    result = qa({"query": query})

    return result

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with PDF</h1>
    <p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
    when everything is ready, you can start asking questions about the pdf ;)</p>
    <a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/fffiloni/langchain-chat-with-pdf?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
"""


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        
        with gr.Column():
            pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
            repo_id = gr.Dropdown(label="LLM", choices=["google/flan-ul2", "OpenAssistant/oasst-sft-1-pythia-12b", "bigscience/bloomz"], value="google/flan-ul2")
            with gr.Row():
                langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_pdf = gr.Button("Load pdf to langchain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
        submit_btn = gr.Button("Send message")
    #load_pdf.click(loading_pdf, None, langchain_status, queue=False)    
    repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
    load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )
    submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )

demo.launch()