scholarly360
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
from annotated_text import annotated_text, annotation
|
4 |
+
import fitz
|
5 |
+
import os
|
6 |
+
import chromadb
|
7 |
+
import uuid
|
8 |
+
from pathlib import Path
|
9 |
+
import os
|
10 |
+
os.environ['OPENAI_API_KEY'] = os.environ['OPEN_API_KEY']
|
11 |
+
st.title("Contracts Multiple File Search ")
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
15 |
+
from langchain.schema import Document
|
16 |
+
from langchain.vectorstores import Chroma
|
17 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
18 |
+
embedding = HuggingFaceEmbeddings(model_name='BAAI/bge-base-en-v1.5')
|
19 |
+
from FlagEmbedding import FlagReranker
|
20 |
+
reranker = FlagReranker('BAAI/bge-reranker-base')
|
21 |
+
import spacy
|
22 |
+
# Load the English model from SpaCy
|
23 |
+
nlp = spacy.load("en_core_web_md")
|
24 |
+
|
25 |
+
def util_upload_file_and_return_list_docs(uploaded_files):
|
26 |
+
#util_del_cwd()
|
27 |
+
list_docs = []
|
28 |
+
list_save_path = []
|
29 |
+
for uploaded_file in uploaded_files:
|
30 |
+
save_path = Path(os.getcwd(), uploaded_file.name)
|
31 |
+
with open(save_path, mode='wb') as w:
|
32 |
+
w.write(uploaded_file.getvalue())
|
33 |
+
#print('save_path:', save_path)
|
34 |
+
docs = fitz.open(save_path)
|
35 |
+
list_docs.append(docs)
|
36 |
+
list_save_path.append(save_path)
|
37 |
+
return(list_docs, list_save_path)
|
38 |
+
#### Helper Functions to Split using Rolling Window (recomm : use smaller rolling window )
|
39 |
+
def split_txt_file_synthetic_sentence_rolling(ctxt, sentence_size_in_chars, sliding_size_in_chars,debug=False):
|
40 |
+
sliding_size_in_chars = sentence_size_in_chars - sliding_size_in_chars
|
41 |
+
pos_start = 0
|
42 |
+
pos_end = len(ctxt)
|
43 |
+
final_return = []
|
44 |
+
if(debug):
|
45 |
+
print('pos_start : ',pos_start)
|
46 |
+
print('pos_end : ',pos_end)
|
47 |
+
if(pos_end<sentence_size_in_chars):
|
48 |
+
return([{'section_org_text':ctxt[pos_start:pos_end],'section_char_start':pos_start,'section_char_end':pos_end}])
|
49 |
+
if(sentence_size_in_chars<sliding_size_in_chars):
|
50 |
+
return(None)
|
51 |
+
stop_condition = False
|
52 |
+
start = pos_start
|
53 |
+
end = start + sentence_size_in_chars
|
54 |
+
mydict = {}
|
55 |
+
mydict['section_org_text'] = ctxt[start:end]
|
56 |
+
mydict['section_char_start'] = start
|
57 |
+
mydict['section_char_end'] = end
|
58 |
+
final_return.append(mydict)
|
59 |
+
#### First Time ENDS
|
60 |
+
while(stop_condition==False):
|
61 |
+
start = end - sliding_size_in_chars
|
62 |
+
end = start + sentence_size_in_chars
|
63 |
+
if(end>pos_end):
|
64 |
+
if(start<pos_end):
|
65 |
+
end = pos_end
|
66 |
+
mydict = {}
|
67 |
+
mydict['section_org_text'] = ctxt[start:end]
|
68 |
+
mydict['section_char_start'] = start
|
69 |
+
mydict['section_char_end'] = end
|
70 |
+
final_return.append(mydict)
|
71 |
+
stop_condition=True
|
72 |
+
else:
|
73 |
+
stop_condition=True
|
74 |
+
else:
|
75 |
+
mydict = {}
|
76 |
+
mydict['section_org_text'] = ctxt[start:end]
|
77 |
+
mydict['section_char_start'] = start
|
78 |
+
mydict['section_char_end'] = end
|
79 |
+
final_return.append(mydict)
|
80 |
+
if(debug):
|
81 |
+
print('start : ', start)
|
82 |
+
print('end : ', end)
|
83 |
+
return(final_return)
|
84 |
+
### helper to make string out of iw_status
|
85 |
+
# def util_get_list_page_and_passage(docs):
|
86 |
+
# page_documents = []
|
87 |
+
# passage_documents = []
|
88 |
+
# for txt_index, txt_page in enumerate(docs):
|
89 |
+
# page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
|
90 |
+
# page_documents.append(page_document)
|
91 |
+
# sections = split_txt_file_synthetic_sentence_rolling(page_document,700,200)
|
92 |
+
# for sub_sub_index, sub_sub_item in enumerate(sections):
|
93 |
+
# sub_text=sub_sub_item['section_org_text']
|
94 |
+
# passage_document = Document(page_content=sub_text, metadata={"page_index": txt_index})
|
95 |
+
# passage_documents.append(passage_document)
|
96 |
+
# return(page_documents,passage_documents)
|
97 |
+
|
98 |
+
def split_into_sentences_with_offsets(text):
|
99 |
+
"""
|
100 |
+
Splits a paragraph into sentences and returns them along with their start and end offsets.
|
101 |
+
:param text: The input text to be split into sentences.
|
102 |
+
:return: A list of tuples, each containing a sentence and its start and end offsets.
|
103 |
+
"""
|
104 |
+
doc = nlp(text)
|
105 |
+
return [(sent.text, sent.start_char, sent.end_char) for sent in doc.sents]
|
106 |
+
|
107 |
+
def util_get_list_page_and_passage(list_docs, list_save_path):
|
108 |
+
#page_documents = []
|
109 |
+
passage_documents = []
|
110 |
+
for ind_doc, docs in enumerate(list_docs):
|
111 |
+
for txt_index, txt_page in enumerate(docs):
|
112 |
+
page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
|
113 |
+
#page_documents.append(page_document)
|
114 |
+
sections = split_into_sentences_with_offsets(page_document)
|
115 |
+
for sub_sub_index, sub_sub_item in enumerate(sections):
|
116 |
+
sub_text=sub_sub_item[0]
|
117 |
+
passage_document = Document(page_content=sub_text, metadata={"page_content": page_document,"page_index": txt_index, "file_name" : str(list_save_path[ind_doc])})
|
118 |
+
passage_documents.append(passage_document)
|
119 |
+
return(passage_documents)
|
120 |
+
|
121 |
+
# def util_index_chromadb_passages():
|
122 |
+
# ##### PROCESSING
|
123 |
+
# # create client and a new collection
|
124 |
+
# collection_name = str(uuid.uuid4().hex)
|
125 |
+
# chroma_client = chromadb.EphemeralClient()
|
126 |
+
# chroma_collection = chroma_client.get_or_create_collection(collection_name)
|
127 |
+
# # define embedding function
|
128 |
+
# embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="BAAI/bge-small-en"))
|
129 |
+
# vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
130 |
+
# return(chroma_client,chroma_collection,collection_name,vector_store,embed_model)
|
131 |
+
|
132 |
+
def util_get_only_content_inside_loop(page_no,page_documents):
|
133 |
+
for index, item in enumerate(page_documents):
|
134 |
+
if(page_documents[index].metadata['txt_page_index']==page_no):
|
135 |
+
return(page_documents[index].get_content())
|
136 |
+
return(None)
|
137 |
+
# def util_get_list_pageno_and_contents(page_documents,passage_documents,passage_nodes):
|
138 |
+
# ''' page no starts with index 1 '''
|
139 |
+
# return_value = []
|
140 |
+
# for index, item in enumerate(passage_nodes):
|
141 |
+
# page_no = passage_nodes[index].metadata['txt_page_index']
|
142 |
+
# page_content = util_get_only_content_inside_loop(page_no,page_documents)
|
143 |
+
# return_value.append((page_no+1,page_content))
|
144 |
+
# return(return_value)
|
145 |
+
|
146 |
+
def util_get_list_pageno_and_contents(some_query_passage,passage_documents,passage_nodes):
|
147 |
+
''' page no starts with index 1 '''
|
148 |
+
|
149 |
+
return_value = []
|
150 |
+
rescore = reranker.compute_score([[some_query_passage , x.page_content] for x in passage_nodes])
|
151 |
+
print('rescore :: ',rescore)
|
152 |
+
tmp_array = []
|
153 |
+
for i, x in enumerate(passage_nodes):
|
154 |
+
tmp_dict = {"passage_content":x.page_content,
|
155 |
+
"page_no":int(x.metadata['page_index'])+1,
|
156 |
+
"page_content":str(x.metadata['page_content']),
|
157 |
+
"file_name": str(x.metadata['file_name']),
|
158 |
+
"score" : float(rescore[i])}
|
159 |
+
tmp_array.append(tmp_dict)
|
160 |
+
df = pd.DataFrame(tmp_array)
|
161 |
+
df = df.sort_values(by='score', ascending=False)
|
162 |
+
df = df.drop_duplicates(subset=['file_name'], keep='first')
|
163 |
+
df = df[["passage_content","file_name","page_no","page_content","score"]]
|
164 |
+
return(df)
|
165 |
+
|
166 |
+
# # def util_openai_extract_entity(example_passage, example_entity, page_content):
|
167 |
+
# # import openai
|
168 |
+
# # openai.api_key = os.environ['OPENAI_API_KEY']
|
169 |
+
|
170 |
+
# # content = """Find the Entity based on Text . Return empty string if Entity does not exists. Here is one example below
|
171 |
+
# # Text: """ + example_passage + """
|
172 |
+
# # Entity: """ + example_entity + """
|
173 |
+
|
174 |
+
# # Text: """ + page_content + """
|
175 |
+
# # Entity: """
|
176 |
+
|
177 |
+
# # return_value = openai.ChatCompletion.create(model="gpt-4",temperature=0.0001,messages=[{"role": "user", "content": content},])
|
178 |
+
# # return(str(return_value['choices'][0]['message']['content']))
|
179 |
+
def util_openai_extract_clause(example_prompt, page_content):
|
180 |
+
import openai
|
181 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
182 |
+
content = example_prompt
|
183 |
+
content = content + "\n Answer precisely; do not add anything extra, and try to locate the answer in the below context \n context: "
|
184 |
+
return_value = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature=0.0001,messages=[{"role": "user", "content": content + "\n" + page_content},])
|
185 |
+
return(str(return_value['choices'][0]['message']['content']))
|
186 |
+
|
187 |
+
|
188 |
+
def util_openai_hyde(example_prompt):
|
189 |
+
import openai
|
190 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
191 |
+
content = example_prompt
|
192 |
+
return_value = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature=0.0001,messages=[
|
193 |
+
{"role": "system", "content": "You are a legal contract lawyer. generate a summary from below text " + "\n"},
|
194 |
+
{"role": "user", "content": example_prompt + "\n"},
|
195 |
+
|
196 |
+
]
|
197 |
+
)
|
198 |
+
return(str(return_value['choices'][0]['message']['content']))
|
199 |
+
|
200 |
+
|
201 |
+
def util_openai_format (example_passage, page_content):
|
202 |
+
'''
|
203 |
+
annotated_text(" ",annotation("ENTITY : ", str(page_no)),)
|
204 |
+
'''
|
205 |
+
if(True):
|
206 |
+
found_value = util_openai_extract_clause(example_passage, page_content)
|
207 |
+
if(len(found_value)>0):
|
208 |
+
found_value = found_value.strip()
|
209 |
+
first_index = page_content.find(found_value)
|
210 |
+
if(first_index!=-1):
|
211 |
+
print('first_index : ',first_index)
|
212 |
+
print('found_value : ',found_value)
|
213 |
+
return(annotated_text(page_content[0:first_index-1],annotation(found_value, " FOUND ENTITY "),page_content[first_index+len(found_value):]))
|
214 |
+
return(annotated_text(page_content))
|
215 |
+
def util_openai_modify_prompt(example_prompt, page_content):
|
216 |
+
import openai
|
217 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
218 |
+
my_prompt = """Expand the original Query to show exact resuls for extraction\n
|
219 |
+
Query: """ + example_prompt # + """\nDocument: """ + page_content + """ """
|
220 |
+
return_value = openai.ChatCompletion.create(model="gpt-4",temperature=0.0001,messages=[{"role": "user", "content": my_prompt},])
|
221 |
+
return(str(return_value['choices'][0]['message']['content']))
|
222 |
+
|
223 |
+
# def create_bm25_page_rank(page_list_retrieve, page_query):
|
224 |
+
# """ page_corpus : array of page text , page_query is user query """
|
225 |
+
# from operator import itemgetter
|
226 |
+
# from rank_bm25 import BM25Okapi
|
227 |
+
# tokenized_corpus = [doc.split(" ") for x, doc in page_list_retrieve]
|
228 |
+
# tokenized_query = page_query.split(" ")
|
229 |
+
# bm25 = BM25Okapi(tokenized_corpus)
|
230 |
+
# doc_scores = bm25.get_scores(tokenized_query).tolist()
|
231 |
+
# tmp_list = []
|
232 |
+
# for index, item in enumerate(page_list_retrieve):
|
233 |
+
# tmp_list.append((item[0], item[1],doc_scores[index]))
|
234 |
+
# tmp_list = sorted(tmp_list, key=itemgetter(2), reverse=True)
|
235 |
+
# return(tmp_list)
|
236 |
+
|
237 |
+
|
238 |
+
passage_documents = []
|
239 |
+
|
240 |
+
if(True):
|
241 |
+
with st.form("my_form"):
|
242 |
+
multi = '''1. Download and Upload Multiple contracts (PDF)
|
243 |
+
|
244 |
+
e.g. https://www.barc.gov.in/tenders/GCC-LPS.pdf
|
245 |
+
|
246 |
+
e.g. https://www.montrosecounty.net/DocumentCenter/View/823/Sample-Construction-Contract
|
247 |
+
'''
|
248 |
+
st.markdown(multi)
|
249 |
+
multi = '''2. Insert Query to search or find similar language '''
|
250 |
+
st.markdown(multi)
|
251 |
+
multi = '''3. Press Index.'''
|
252 |
+
st.markdown(multi)
|
253 |
+
multi = '''
|
254 |
+
** Attempt is made for appropriate page and passage retrieval ** \n
|
255 |
+
'''
|
256 |
+
st.markdown(multi)
|
257 |
+
#uploaded_file = st.file_uploader("Choose a file")
|
258 |
+
|
259 |
+
list_docs = []
|
260 |
+
list_save_path = []
|
261 |
+
uploaded_files = st.file_uploader("Choose file(s)", accept_multiple_files=True)
|
262 |
+
print('uploaded_files ', uploaded_files)
|
263 |
+
|
264 |
+
|
265 |
+
single_example_passage = st.text_area('Enter Query or similar passage Here and press Chat',"What is Governing Law?")
|
266 |
+
submitted = st.form_submit_button("Index and Answer")
|
267 |
+
|
268 |
+
if submitted and (uploaded_files is not None):
|
269 |
+
list_docs, list_save_path = util_upload_file_and_return_list_docs(uploaded_files)
|
270 |
+
passage_documents = util_get_list_page_and_passage(list_docs, list_save_path)
|
271 |
+
|
272 |
+
|
273 |
+
# st.button("Chat")
|
274 |
+
# if st.button('Chat'):
|
275 |
+
bm25_retriever = BM25Retriever.from_documents(passage_documents)
|
276 |
+
bm25_retriever.k = 2
|
277 |
+
chroma_vectorstore = Chroma.from_documents(passage_documents, embedding)
|
278 |
+
chroma_retriever = chroma_vectorstore.as_retriever(search_kwargs={"k": 2})
|
279 |
+
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, chroma_retriever],weights=[0.25, 0.75])
|
280 |
+
passage_nodes = ensemble_retriever.get_relevant_documents(single_example_passage)
|
281 |
+
print('len(passage_nodes):', len(passage_nodes))
|
282 |
+
df = util_get_list_pageno_and_contents(single_example_passage,passage_documents,passage_nodes)
|
283 |
+
st.write(df)
|
284 |
+
# print('len(page_list_retrieve):', len(page_list_retrieve))
|
285 |
+
# if(len(page_list_retrieve)>0):
|
286 |
+
# page_list_retrieve = list(set(page_list_retrieve))
|
287 |
+
# for iindex in page_list_retrieve:
|
288 |
+
# page_no = iindex[0]
|
289 |
+
# page_content = iindex[1]
|
290 |
+
# annotated_text(" ",annotation("RELEVANT PAGENO : ", str(page_no), font_family="Comic Sans MS", border="2px dashed red"),)
|
291 |
+
# util_openai_format(single_example_passage, page_content)
|
292 |
+
# annotated_text(" ",annotation("RELEVANT PASSAGE : ", "", font_family="Comic Sans MS", border="2px dashed red"),)
|
293 |
+
# st.write(found_passage)
|
294 |
+
# pchroma_client = chromadb.Client()
|
295 |
+
# for citem in pchroma_client.list_collections():
|
296 |
+
# print(citem.name)
|