scholarly360
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
import uuid
|
4 |
+
from pathlib import Path
|
5 |
+
import os
|
6 |
+
import pandas as pd
|
7 |
+
import json
|
8 |
+
import docx
|
9 |
+
# import openai
|
10 |
+
# from langchain.chat_models import ChatOpenAI
|
11 |
+
# from langchain.prompts import PromptTemplate
|
12 |
+
|
13 |
+
st.title("Passage Name with Gen-AI")
|
14 |
+
os.environ["OPENAI_API_KEY"] = os.environ["OPEN_API_KEY"]
|
15 |
+
from openai import OpenAI
|
16 |
+
client = OpenAI()
|
17 |
+
list_dict = []
|
18 |
+
LIMIT_WORDS_PARA = 7
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
# Function to guess a single topic for a given text
|
23 |
+
def guess_topic(clause_text):
|
24 |
+
response = client.chat.completions.create(
|
25 |
+
model="gpt-4",
|
26 |
+
messages=[
|
27 |
+
{
|
28 |
+
"role": "system",
|
29 |
+
"content": "You are a legal contract assistant. Find type or title of the paragraph, e.g. Governing Law, Confidentiality etc."
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"role": "user",
|
33 |
+
"content": "THIS AGREEMENT SHALL BE GOVERNED BY AND CONSTRUED IN ACCORDANCE WITH THE LAWS OF THE STATE OF NEW YORK."
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"role": "assistant",
|
37 |
+
"content": "Governing Law"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": "The provisions of this Agreement will be held in strictest confidence by you and the Company and will not be publicized or disclosed in any manner whatsoever; provided, however, that: (a) you may disclose this Agreement to your immediate family; (b) the parties may disclose this Agreement in confidence to their respective attorneys, accountants, auditors, tax preparers, and financial advisors; (c) the Company may disclose this Agreement as necessary to fulfill standard or legally required corporate reporting or disclosure requirements; and (d) the parties may disclose this Agreement insofar as such disclosure may be necessary to enforce its terms or as otherwise required by law."
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"role": "assistant",
|
45 |
+
"content": "Confidentiality"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"role": "user",
|
49 |
+
"content": clause_text
|
50 |
+
},
|
51 |
+
],
|
52 |
+
temperature=0,
|
53 |
+
max_tokens=10,
|
54 |
+
top_p=1,
|
55 |
+
frequency_penalty=0,
|
56 |
+
presence_penalty=0
|
57 |
+
)
|
58 |
+
return(response)
|
59 |
+
|
60 |
+
with st.form("my_form"):
|
61 |
+
multi = '''
|
62 |
+
|
63 |
+
1. Upload many files (DOCX) Only
|
64 |
+
|
65 |
+
2. Press Calculate and Get Name of Clauses
|
66 |
+
|
67 |
+
'''
|
68 |
+
st.markdown(multi)
|
69 |
+
uploaded_files = st.file_uploader('Upload your files',accept_multiple_files=True)
|
70 |
+
for f in uploaded_files:
|
71 |
+
if True:
|
72 |
+
save_path = Path(os.getcwd(), f.name)
|
73 |
+
with open(save_path, mode='wb') as w:
|
74 |
+
w.write(f.getvalue())
|
75 |
+
doc = docx.Document(save_path)
|
76 |
+
paragraphs = doc.paragraphs
|
77 |
+
for para in paragraphs:
|
78 |
+
text = para.text
|
79 |
+
words = text.split()
|
80 |
+
if len(words) > LIMIT_WORDS_PARA:
|
81 |
+
list_dict.append({"file":f.name, "example":text})
|
82 |
+
######
|
83 |
+
print('len(list_dict)',len(list_dict))
|
84 |
+
df_new_trimmed = pd.DataFrame(list_dict)
|
85 |
+
######
|
86 |
+
submitted = st.form_submit_button("Calculate")
|
87 |
+
if submitted and (uploaded_files is not None):
|
88 |
+
topics_list = []
|
89 |
+
for doc in list(df_new_trimmed['example']):
|
90 |
+
tmp_keywords_custom = guess_topic(doc).choices[0].message.content
|
91 |
+
topics_list.append(tmp_keywords_custom)
|
92 |
+
df_new_trimmed['Predicted_Clause'] = topics_list
|
93 |
+
|
94 |
+
print(topics_list[0])
|
95 |
+
|
96 |
+
st.dataframe(df_new_trimmed)
|
97 |
+
st.write('-----')
|