Spaces:
Runtime error
Runtime error
scholarly360
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,9 @@ from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
|
12 |
from langchain.schema import Document
|
13 |
from langchain.vectorstores import Chroma
|
14 |
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
-
|
|
|
|
|
16 |
|
17 |
def util_upload_file_and_return_list_docs(uploaded_files):
|
18 |
#util_del_cwd()
|
@@ -130,10 +132,21 @@ with st.form("my_form"):
|
|
130 |
list_save_path = []
|
131 |
uploaded_files = st.file_uploader("Choose file(s)", accept_multiple_files=True)
|
132 |
print('uploaded_files ', uploaded_files)
|
133 |
-
submitted = st.form_submit_button("
|
|
|
|
|
|
|
134 |
|
135 |
if submitted and (uploaded_files is not None):
|
136 |
list_docs, list_save_path = util_upload_file_and_return_list_docs(uploaded_files)
|
137 |
# print('list_docs ' ,list_docs)
|
138 |
# print('list_save_path ' , list_save_path)
|
139 |
passage_documents = util_get_list_page_and_passage(list_docs, list_save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from langchain.schema import Document
|
13 |
from langchain.vectorstores import Chroma
|
14 |
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
from setfit import SetFitModel
|
16 |
+
# Download from the 🤗 Hub
|
17 |
+
clause_model = SetFitModel.from_pretrained("scholarly360/setfit-contracts-clauses")
|
18 |
|
19 |
def util_upload_file_and_return_list_docs(uploaded_files):
|
20 |
#util_del_cwd()
|
|
|
132 |
list_save_path = []
|
133 |
uploaded_files = st.file_uploader("Choose file(s)", accept_multiple_files=True)
|
134 |
print('uploaded_files ', uploaded_files)
|
135 |
+
submitted = st.form_submit_button("Calculate")
|
136 |
+
|
137 |
+
my_list_structure = []
|
138 |
+
import pandas as pd
|
139 |
|
140 |
if submitted and (uploaded_files is not None):
|
141 |
list_docs, list_save_path = util_upload_file_and_return_list_docs(uploaded_files)
|
142 |
# print('list_docs ' ,list_docs)
|
143 |
# print('list_save_path ' , list_save_path)
|
144 |
passage_documents = util_get_list_page_and_passage(list_docs, list_save_path)
|
145 |
+
for passage_document in passage_documents:
|
146 |
+
text = passage_document.page_content
|
147 |
+
metadata = passage_document.metadata
|
148 |
+
preds = model(text)
|
149 |
+
my_list_structure.append({"text": text, "metadata": metadata,"preds":preds })
|
150 |
+
|
151 |
+
df = pd.DataFrame(my_list_structure)
|
152 |
+
df
|