mervenoyan's picture
simplified UI
92f9233
raw
history blame
7.5 kB
import gradio as gr
import pandas as pd
from huggingface_hub.hf_api import create_repo, upload_folder, upload_file, HfApi
from huggingface_hub.repository import Repository
import subprocess
import os
import tempfile
from uuid import uuid4
import pickle
import sweetviz as sv
import dabl
import re
def analyze_datasets(dataset, token, column=None, pairwise="off"):
df = pd.read_csv(dataset.name)
username = HfApi().whoami(token=token)["name"]
if column is not None:
analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise)
else:
analyze_report = sv.analyze(df, pairwise_analysis=pairwise)
dataset_name = dataset.name.split("/")[-1].strip(".csv")
analyze_report.show_html('./index.html', open_browser=False)
repo_url = create_repo(f"{username}/{dataset_name}-report", repo_type = "space", token = token, space_sdk = "static", private=False)
upload_file(path_or_fileobj ="./index.html", path_in_repo = "./index.html", repo_id =f"{username}/{dataset_name}-report", repo_type = "space", token=token)
readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
with open("README.md", "w+") as f:
f.write(readme)
upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}-report", repo_type = "space", token=token)
return f"Your dataset report will be ready at {repo_url}"
from sklearn.utils import estimator_html_repr
def extract_estimator_config(model):
hyperparameter_dict = model.get_params(deep=True)
table = "| Hyperparameters | Value |\n| :-- | :-- |\n"
for hyperparameter, value in hyperparameter_dict.items():
table += f"| {hyperparameter} | {value} |\n"
return table
def detect_training(df, column):
if dabl.detect_types(df)["continuous"][column] or dabl.detect_types(df)["dirty_float"][column]:
trainer = dabl.SimpleRegressor()
task = "regression"
elif dabl.detect_types(df)["categorical"][column] or dabl.detect_types(df)["low_card_int"][column] or dabl.detect_types(df)["free_string"][column]:
trainer = dabl.SimpleClassifier()
task = "classification"
return trainer, task
def edit_types(df):
types = dabl.detect_types(df)
low_cardinality = types[types["low_card_int"] == True].index.tolist()
dirty_float = types[types["dirty_float"] == True].index.tolist()
type_hints = {}
for col in low_cardinality:
type_hints[col] = "categorical"
for col in dirty_float:
type_hints[col] = "continuous"
df_clean = dabl.clean(df, type_hints=type_hints)
return df_clean
def train_baseline(dataset, token, column):
df = pd.read_csv(dataset.name)
dataset_name = dataset.name.split("/")[-1].strip(".csv")
df_clean = edit_types(df)
fc, task = detect_training(df_clean, column)
X = df_clean.drop(column, axis = 1)
y = df_clean[column]
with tempfile.TemporaryDirectory() as tmpdirname:
from contextlib import redirect_stdout
with open(f'{tmpdirname}/logs.txt', 'w') as f:
with redirect_stdout(f):
print('Logging training')
fc.fit(X, y)
username = HfApi().whoami(token=token)["name"]
repo_url = create_repo(repo_id = f"{username}/{dataset_name}-{column}-{task}", token = token)
if task == "regression":
task_metadata = "tabular-regression"
else:
task_metadata = "tabular-classification"
readme = f"---\nlicense: apache-2.0\nlibrary_name: sklearn\ntags:\n- {task_metadata}\n- baseline-trainer\n---\n\n"
readme += f"## Baseline Model trained on {dataset_name} to apply {task} on {column}\n\n"
readme+="**Metrics of the best model:**\n\n"
for elem in str(fc.current_best_).split("\n"):
readme+= f"{elem}\n\n"
readme+= "\n\n**See model plot below:**\n\n"
readme+= re.sub(r"\n\s+", "", str(estimator_html_repr(fc.est_)))
readme+= "\n\n**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).\n\n"
readme+= "**Logs of training** including the models tried in the process can be found in logs.txt"
with open(f"{tmpdirname}/README.md", "w+") as f:
f.write(readme)
with open(f"{tmpdirname}/clf.pkl", mode="bw") as f:
pickle.dump(fc, file=f)
upload_folder(repo_id =f"{username}/{dataset_name}-{column}-{task}", folder_path=tmpdirname, repo_type = "model", token=token, path_in_repo="./")
return f"Your model will be ready at {repo_url}"
with gr.Blocks() as demo:
main_title = gr.Markdown("""# Baseline Trainer πŸͺ„πŸŒŸβœ¨""")
main_desc = gr.Markdown("""This app trains a baseline model for a given dataset and pushes it to your Hugging Face Hub Profile with a model card. For better results, use [AutoTrain](https://huggingface.co/autotrain).""")
with gr.Tabs():
with gr.TabItem("Baseline Trainer") as baseline_trainer:
with gr.Row():
with gr.Column():
title = gr.Markdown(""" ## Train a supervised baseline model""")
description = gr.Markdown("This app trains a model and pushes it to your Hugging Face Hub Profile.")
dataset = gr.File(label = "CSV Dataset")
column = gr.Text(label = "Enter target variable:")
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token.")
token = gr.Textbox(label = "Your Hugging Face Token")
inference_run = gr.Button("Train")
inference_progress = gr.StatusTracker(cover_container=True)
outcome = gr.outputs.Textbox(label = "Progress")
inference_run.click(
train_baseline,
inputs=[dataset, token, column],
outputs=outcome,
status_tracker=inference_progress,
)
with gr.TabItem("Analyze") as analyze:
with gr.Row():
with gr.Column():
title = gr.Markdown(""" ## Analyze Dataset """)
description = gr.Markdown("Analyze a dataset or predictive variables against a target variable in a dataset (enter a column name to column section if you want to compare against target value). You can also do pairwise analysis, but it has quadratic complexity.")
dataset = gr.File(label = "CSV Dataset")
column = gr.Text(label = "Compare dataset against a target variable (Optional)")
pairwise = gr.Radio(["off", "on"], label = "Enable pairwise analysis")
token = gr.Textbox(label = "Your Hugging Face Token")
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token.")
inference_run = gr.Button("Infer")
inference_progress = gr.StatusTracker(cover_container=True)
outcome = gr.outputs.Textbox()
inference_run.click(
analyze_datasets,
inputs=[dataset, token, column, pairwise],
outputs=outcome,
status_tracker=inference_progress,
)
demo.launch(debug=True)