mervenoyan commited on
Commit
3bfabca
·
1 Parent(s): ae1692d

misc improvements

Browse files
Files changed (2) hide show
  1. app.py +4 -1
  2. logs.txt +0 -31
app.py CHANGED
@@ -70,7 +70,10 @@ def train_baseline(dataset, dataset_name, token, column):
70
  with tempfile.TemporaryDirectory() as tmpdirname:
71
  from contextlib import redirect_stdout
72
 
73
- fc.fit(X, y)
 
 
 
74
  username = HfApi().whoami(token=token)["name"]
75
  repo_url = create_repo(repo_id = f"{username}/{dataset_name}", token = token)
76
 
 
70
  with tempfile.TemporaryDirectory() as tmpdirname:
71
  from contextlib import redirect_stdout
72
 
73
+ with open(f'{tmpdirname}/logs.txt', 'w') as f:
74
+ with redirect_stdout(f):
75
+ print('Logging training')
76
+ fc.fit(X, y)
77
  username = HfApi().whoami(token=token)["name"]
78
  repo_url = create_repo(repo_id = f"{username}/{dataset_name}", token = token)
79
 
logs.txt DELETED
@@ -1,31 +0,0 @@
1
- Logging training
2
- Running DummyClassifier()
3
- accuracy: 0.643 average_precision: 0.357 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.392
4
- === new best DummyClassifier() (using recall_macro):
5
- accuracy: 0.643 average_precision: 0.357 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.392
6
-
7
- Running GaussianNB()
8
- accuracy: 0.623 average_precision: 0.505 roc_auc: 0.590 recall_macro: 0.560 f1_macro: 0.549
9
- === new best GaussianNB() (using recall_macro):
10
- accuracy: 0.623 average_precision: 0.505 roc_auc: 0.590 recall_macro: 0.560 f1_macro: 0.549
11
-
12
- Running MultinomialNB()
13
- accuracy: 0.647 average_precision: 0.481 roc_auc: 0.609 recall_macro: 0.589 f1_macro: 0.588
14
- === new best MultinomialNB() (using recall_macro):
15
- accuracy: 0.647 average_precision: 0.481 roc_auc: 0.609 recall_macro: 0.589 f1_macro: 0.588
16
-
17
- Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
18
- accuracy: 0.586 average_precision: 0.401 roc_auc: 0.568 recall_macro: 0.568 f1_macro: 0.558
19
- Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
20
- accuracy: 0.590 average_precision: 0.419 roc_auc: 0.564 recall_macro: 0.576 f1_macro: 0.560
21
- Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
22
- accuracy: 0.582 average_precision: 0.393 roc_auc: 0.563 recall_macro: 0.567 f1_macro: 0.555
23
- Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
24
- accuracy: 0.574 average_precision: 0.487 roc_auc: 0.425 recall_macro: 0.548 f1_macro: 0.547
25
- Running LogisticRegression(class_weight='balanced', max_iter=1000)
26
- accuracy: 0.578 average_precision: 0.470 roc_auc: 0.437 recall_macro: 0.562 f1_macro: 0.557
27
-
28
- Best model:
29
- Pipeline(steps=[('minmaxscaler', MinMaxScaler()), ('multinomialnb', MultinomialNB())])
30
- Best Scores:
31
- accuracy: 0.647 average_precision: 0.481 roc_auc: 0.609 recall_macro: 0.589 f1_macro: 0.588