File size: 5,224 Bytes
9dbf344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
#from ctransformers import AutoModelForCausalLM
#from transformers import AutoTokenizer, pipeline
from bertopic.representation import LlamaCPP
from llama_cpp import Llama
from pydantic import BaseModel
import torch.cuda

from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, TextGeneration
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start

#from huggingface_hub import hf_hub_download
#hf_hub_download(repo_id='second-state/stablelm-2-zephyr-1.6b-GGUF', filename='stablelm-2-zephyr-1_6b-Q5_K_M.gguf')

hf_model_name =  'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
hf_model_file =   'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
chosen_prompt = open_hermes_prompt # stablelm_prompt 
chosen_start_tag =  open_hermes_start # stablelm_start

# Find model file
def find_model_file(hf_model_name, hf_model_file):
    hf_loc = os.environ["HF_HOME"]
    hf_sub_loc = os.environ["HF_HOME"] + "/hub/"

    hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--")

    print(hf_model_name_path)

    def find_file(root_folder, file_name):
        for root, dirs, files in os.walk(root_folder):
            if file_name in files:
                return os.path.join(root, file_name)
        return None

    # Example usage
    folder_path = hf_model_name_path  # Replace with your folder path
    file_to_find = hf_model_file         # Replace with the file name you're looking for

    found_file = find_file(folder_path, file_to_find)
    if found_file:
        print(f"File found: {found_file}")
        return found_file
    else:
        error = "File not found."
        print(error)
        return error

found_file = find_model_file(hf_model_name, hf_model_file)

# Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
    torch_device = "gpu"
    low_resource_mode = "No"
    n_gpu_layers = 100
else: 
    torch_device =  "cpu"
    low_resource_mode = "Yes"
    n_gpu_layers = 0

#low_resource_mode = "Yes"

#print("Running on device:", torch_device)
n_threads = torch.get_num_threads()
print("CPU n_threads:", n_threads)

# Default Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repeat_penalty: float = 1.1
last_n_tokens_size: int = 128
max_tokens: int = 500
seed: int = 42
reset: bool = True
stream: bool = False
n_threads: int = n_threads
n_batch:int = 256
n_ctx:int = 4096
sample:bool = True
trust_remote_code:bool =True

class LLamacppInitConfigGpu(BaseModel):
    last_n_tokens_size: int
    seed: int
    n_threads: int
    n_batch: int
    n_ctx: int
    n_gpu_layers: int
    temperature: float
    top_k: int
    top_p: float
    repeat_penalty: float
    max_tokens: int
    reset: bool
    stream: bool
    stop: str
    trust_remote_code:bool

    def update_gpu(self, new_value: int):
        self.n_gpu_layers = new_value

gpu_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size,
    seed=seed,
    n_threads=n_threads,
    n_batch=n_batch,
    n_ctx=n_ctx,
    n_gpu_layers=n_gpu_layers,
    temperature=temperature,
    top_k=top_k,
    top_p=top_p,
    repeat_penalty=repeat_penalty,
    max_tokens=max_tokens,
    reset=reset,
    stream=stream,
    stop=chosen_start_tag,
    trust_remote_code=trust_remote_code)

cpu_config = gpu_config.model_copy()
cpu_config.update_gpu(0)

class LLamacppGenerateConfig(BaseModel):
    temperature: float
    top_k: int
    top_p: float
    repeat_penalty: float
    max_tokens: int
    reset: bool
    stream: bool

gen_config = LLamacppGenerateConfig(
    temperature=temperature,
    top_k=top_k,
    top_p=top_p,
    repeat_penalty=repeat_penalty,
    max_tokens=max_tokens,
    reset=reset,
    stream=stream)

## Create representation model parameters ##
# KeyBERT
keybert = KeyBERTInspired()

if low_resource_mode == "No":
    # Use llama.cpp to load in model
    llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=n_gpu_layers, n_ctx=n_ctx) #**gpu_config.model_dump())# 
    #print(llm.n_gpu_layers)
    llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())

    # All representation models
    representation_model = {
    "KeyBERT": keybert,
    "Mistral": llm_model
    }

elif low_resource_mode == "Yes":
    representation_model = {"KeyBERT": keybert}

# Deprecated example using CTransformers. This package is not really used anymore
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(gpu_config))
#tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
#generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)

# Text generation with Llama 2
#mistral_capybara = TextGeneration(generator, prompt=capybara_prompt)
#mistral_hermes = TextGeneration(generator, prompt=open_hermes_prompt)



# MMR (is rubbish, don't use)
#mmr = MaximalMarginalRelevance(diversity=0.3)