File size: 12,209 Bytes
e09dd3b
9dbf344
1e2bb3e
4effac0
e09dd3b
9dbf344
e09dd3b
9dbf344
e09dd3b
 
 
04a15c5
e09dd3b
 
 
04a15c5
e09dd3b
 
9dbf344
04a15c5
 
9dbf344
e09dd3b
 
 
04a15c5
9dbf344
 
 
 
 
 
 
 
 
 
 
4effac0
9dbf344
 
 
1e2bb3e
 
04a15c5
1e2bb3e
04a15c5
1e2bb3e
 
 
 
55f0ce3
1e2bb3e
 
 
 
 
 
 
 
 
04a15c5
 
 
 
 
9dbf344
1e2bb3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dbf344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4effac0
 
 
 
 
9dbf344
 
 
4effac0
 
9dbf344
4effac0
 
 
 
 
 
 
9dbf344
 
 
 
 
 
 
 
4effac0
 
9dbf344
 
 
 
4effac0
9dbf344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4effac0
 
9dbf344
4effac0
 
9dbf344
 
4effac0
9dbf344
 
4effac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dbf344
 
 
 
 
 
 
4effac0
9dbf344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from spacy.cli import download
import spacy
from spacy.pipeline import Sentencizer
from funcs.presidio_analyzer_custom import analyze_dict
spacy.prefer_gpu()

def spacy_model_installed(model_name):
    try:
        import en_core_web_sm
        en_core_web_sm.load()
        print("Successfully imported spaCy model")
        nlp = spacy.load("en_core_web_sm")
        #print(nlp._path)
    except:
        download(model_name)
        nlp = spacy.load(model_name)
        print("Successfully imported spaCy model")
    #print(nlp._path)

    return nlp


#if not is_model_installed(model_name):
#    os.system(f"python -m spacy download {model_name}")
model_name = "en_core_web_sm"
nlp = spacy_model_installed(model_name)


import re
import secrets
import base64
import time

import pandas as pd

from faker import Faker

from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, PatternRecognizer
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig

from typing import List

# Function to Split Text and Create DataFrame using SpaCy
def expand_sentences_spacy(df, colname, custom_delimiters:List[str]=[], nlp=nlp):
    expanded_data = []

    # if not custom_delimiters:
    #     custom_delimiters = []

    df = df.drop('index', axis = 1, errors="ignore").reset_index(names='index')

    # sentencizer = Sentencizer()

    # new_punct_chars = sentencizer.default_punct_chars
    # new_punct_chars.extend(custom_delimiters)

    # config = {"punct_chars": new_punct_chars}
    # nlp.add_pipe("sentencizer", config=config)

    for index, row in df.iterrows():
        doc = nlp(row[colname])
        for sent in doc.sents:
            expanded_data.append({'document_index': row['index'], colname: sent.text})
    return pd.DataFrame(expanded_data)

# def expand_sentences_spacy(df, colname, custom_delimiters:List[str]=[], nlp=nlp):

#     #print("Custom delimiters:", custom_delimiters)

#     expanded_data = []
#     df = df.drop('index', axis = 1, errors="ignore").reset_index(names='index')

#     sentencizer = Sentencizer()

#     new_punct_chars = sentencizer.default_punct_chars
#     if custom_delimiters:
#         new_punct_chars.extend(custom_delimiters)

#     pattern = "(" + "|".join(re.escape(punct) for punct in new_punct_chars) + ")"
#     #print("Patterns:", pattern)
#     split_list = []

#     for idx, string in enumerate(df[colname]):
#         new_split = re.split(pattern, string)
#         for n, sentence in enumerate(new_split):
#             if sentence:
#                 # If there is a split delimiter in the 'sentence' after, add it to the previous sentence as it will be removed at a later step
#                 if n + 1 < len(new_split):
#                     if new_split[n + 1]:
#                         # If the next split is in the list of split characters, then add it to this current sentence
#                         if new_split[n + 1] in new_punct_chars:
#                             split_list.append({'document_index': idx, colname: sentence + new_split[n + 1]})
#                 else:
#                     split_list.append({'document_index': idx, colname: sentence})
    
#     return pd.DataFrame(split_list)

def anon_consistent_names(df):
    # ## Pick out common names and replace them with the same person value
    df_dict = df.to_dict(orient="list")

    analyzer = AnalyzerEngine()
    batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)

    analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
    analyzer_results = list(analyzer_results)

    # + tags=[]
    text = analyzer_results[3].value

    # + tags=[]
    recognizer_result = str(analyzer_results[3].recognizer_results)

    # + tags=[]
    recognizer_result

    # + tags=[]
    data_str = recognizer_result  # abbreviated for brevity

    # Adjusting the parse_dict function to handle trailing ']'
    # Splitting the main data string into individual list strings
    list_strs = data_str[1:-1].split('], [')

    def parse_dict(s):
        s = s.strip('[]')  # Removing any surrounding brackets
        items = s.split(', ')
        d = {}
        for item in items:
            key, value = item.split(': ')
            if key == 'score':
                d[key] = float(value)
            elif key in ['start', 'end']:
                d[key] = int(value)
            else:
                d[key] = value
        return d

    # Re-running the improved processing code

    result = []

    for lst_str in list_strs:
        # Splitting each list string into individual dictionary strings
        dict_strs = lst_str.split(', type: ')
        dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]]  # Prepending "type: " back to the split strings
        
        # Parsing each dictionary string
        dicts = [parse_dict(d) for d in dict_strs]
        result.append(dicts)

    #result

    # + tags=[]
    names = []

    for idx, paragraph in enumerate(text):
        paragraph_texts = []
        for dictionary in result[idx]:
            if dictionary['type'] == 'PERSON':
                paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
        names.append(paragraph_texts)

    # + tags=[]
    # Flatten the list of lists and extract unique names
    unique_names = list(set(name for sublist in names for name in sublist))
    
    # + tags=[]
    fake_names = pd.Series(unique_names).apply(fake_first_name)

    # + tags=[]
    mapping_df = pd.DataFrame(data={"Unique names":unique_names,
                    "Fake names": fake_names})

    # + tags=[]
    # Convert mapping dataframe to dictionary
    # Convert mapping dataframe to dictionary, adding word boundaries for full-word match
    name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}

    # + tags=[]
    name_map

    # + tags=[]
    scrubbed_df_consistent_names = df.replace(name_map, regex = True)

    # + tags=[]
    scrubbed_df_consistent_names

    return scrubbed_df_consistent_names

def detect_file_type(filename):
    """Detect the file type based on its extension."""
    if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
        return 'csv'
    elif filename.endswith('.xlsx'):
        return 'xlsx'
    elif filename.endswith('.parquet'):
        return 'parquet'
    else:
        raise ValueError("Unsupported file type.")

def read_file(filename):
    """Read the file based on its detected type."""
    file_type = detect_file_type(filename)
    
    if file_type == 'csv':
        return pd.read_csv(filename, low_memory=False)
    elif file_type == 'xlsx':
        return pd.read_excel(filename)
    elif file_type == 'parquet':
        return pd.read_parquet(filename)

def anonymise_script(df, chosen_col, anon_strat):

    #print(df.shape)

    #df_chosen_col_mask = (df[chosen_col].isnull()) | (df[chosen_col].str.strip() == "")
    #print("Length of input series blank at start is: ", df_chosen_col_mask.value_counts())

    # DataFrame to dict
    df_dict = pd.DataFrame(data={chosen_col:df[chosen_col].astype(str)}).to_dict(orient="list")

    

    analyzer = AnalyzerEngine()

    # Add titles to analyzer list
    titles_recognizer = PatternRecognizer(supported_entity="TITLE",
                                      deny_list=["Mr","Mrs","Miss", "Ms", "mr", "mrs", "miss", "ms"])

    analyzer.registry.add_recognizer(titles_recognizer)

    batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)

    anonymizer = AnonymizerEngine()

    batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)

    print("Identifying personal data")
    analyse_tic = time.perf_counter()
    #analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
    analyzer_results = analyze_dict(batch_analyzer, df_dict, language="en")
    #print(analyzer_results)
    analyzer_results = list(analyzer_results)

    analyse_toc = time.perf_counter()
    analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
    print(analyse_time_out)

    # Generate a 128-bit AES key. Then encode the key using base64 to get a string representation
    key = secrets.token_bytes(16)  # 128 bits = 16 bytes 
    key_string = base64.b64encode(key).decode('utf-8')

    # Create faker function (note that it has to receive a value)
    
    fake = Faker("en_UK")

    def fake_first_name(x):
        return fake.first_name()

    # Set up the anonymization configuration WITHOUT DATE_TIME
    replace_config = eval('{"DEFAULT": OperatorConfig("replace")}')
    redact_config = eval('{"DEFAULT": OperatorConfig("redact")}')
    hash_config = eval('{"DEFAULT": OperatorConfig("hash")}')
    mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}')
    people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
    fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}')


    if anon_strat == "replace": chosen_mask_config = replace_config
    if anon_strat == "redact": chosen_mask_config = redact_config
    if anon_strat == "hash": chosen_mask_config = hash_config
    if anon_strat == "mask": chosen_mask_config = mask_config
    if anon_strat == "encrypt": chosen_mask_config = people_encrypt_config
    elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config

    # I think in general people will want to keep date / times - NOT FOR TOPIC MODELLING
    #keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}')

    #combined_config = {**chosen_mask_config, **keep_date_config}
    combined_config = {**chosen_mask_config}#, **keep_date_config}
    combined_config

    print("Anonymising personal data")
    anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config)

    #print(anonymizer_results)

    scrubbed_df = pd.DataFrame(data={chosen_col:anonymizer_results[chosen_col]})

    scrubbed_series = scrubbed_df[chosen_col]

    #print(scrubbed_series[0:6])

    #print("Length of output series is: ", len(scrubbed_series))
    #print("Length of input series at end is: ", len(df[chosen_col]))

    
    #scrubbed_values_mask = (scrubbed_series.isnull()) | (scrubbed_series.str.strip() == "")
    #df_chosen_col_mask = (df[chosen_col].isnull()) | (df[chosen_col].str.strip() == "")

    #print("Length of input series blank at end is: ", df_chosen_col_mask.value_counts())
    #print("Length of output series blank is: ", scrubbed_values_mask.value_counts())
    

    # Create reporting message
    out_message = "Successfully anonymised"
    
    if anon_strat == "encrypt":
        out_message = out_message + ". Your decryption key is " + key_string + "."
    
    return scrubbed_series, out_message

def do_anonymise(in_file, anon_strat, chosen_cols):
    
    # Load file
    
    anon_df = pd.DataFrame()
    
    if in_file: 
        for match_file in in_file:
            match_temp_file = pd.read_csv(match_file.name, delimiter = ",", low_memory=False)#, encoding='cp1252')
            anon_df = pd.concat([anon_df, match_temp_file])
    
    # Split dataframe to keep only selected columns
    all_cols_original_order = list(anon_df.columns)
    anon_df_part = anon_df[chosen_cols]
    anon_df_remain = anon_df.drop(chosen_cols, axis = 1)
    
    # Anonymise the selected columns
    anon_df_part_out, out_message = anonymise_script(anon_df_part, anon_strat)
        
    # Rejoin the dataframe together
    anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1)
    anon_df_out = anon_df_out[all_cols_original_order]
    
    # Export file
    out_file_part = re.sub(r'\.csv', '', match_file.name)
                
    anon_export_file_name = out_file_part + "_anon_" + anon_strat + ".csv"
    
    anon_df_out.to_csv(anon_export_file_name, index = None)   
    
    return out_message, anon_export_file_name