File size: 47,636 Bytes
ffe5eb2
 
e1c1f68
ffe5eb2
b4510a6
ffe5eb2
e1c1f68
 
 
 
 
 
ffe5eb2
e1c1f68
 
 
 
 
 
 
ffe5eb2
b4510a6
 
 
55f0ce3
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
e1c1f68
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d87c3c
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f0ce3
ffe5eb2
 
 
 
 
55f0ce3
 
 
 
 
ffe5eb2
55f0ce3
 
 
 
 
ffe5eb2
e1c1f68
b27bab2
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
 
ffe5eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4510a6
e1c1f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c1f68
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c1f68
b4510a6
 
 
 
e1c1f68
b4510a6
 
 
e1c1f68
 
b4510a6
 
e1c1f68
 
 
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c1f68
 
 
 
 
 
 
b4510a6
 
 
 
 
 
 
 
e1c1f68
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
b4510a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27bab2
b4510a6
 
 
 
 
 
b27bab2
b4510a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
import numpy as np
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
from plotly.subplots import make_subplots

from bertopic._utils import check_documents_type, validate_distance_matrix
from bertopic.plotting._hierarchy import _get_annotations
import plotly.figure_factory as ff
from packaging import version

import math
from umap import UMAP
from typing import List, Union, Callable

from scipy.sparse import csr_matrix
from scipy.cluster import hierarchy as sch
from sklearn.metrics.pairwise import cosine_similarity
from sklearn import __version__ as sklearn_version
from tqdm import tqdm

import itertools
import numpy as np


# Following adapted from Bertopic original implementation here (Maarten Grootendorst): https://github.com/MaartenGr/BERTopic/blob/master/bertopic/plotting/_documents.py

def visualize_documents_custom(topic_model,
                        docs: List[str],
                        hover_labels: List[str],
                        topics: List[int] = None,
                        embeddings: np.ndarray = None,
                        reduced_embeddings: np.ndarray = None,
                        sample: float = None,
                        hide_annotations: bool = False,
                        hide_document_hover: bool = False,
                        custom_labels: Union[bool, str] = False,
                        title: str = "<b>Documents and Topics</b>",
                        width: int = 1200,
                        height: int = 750, progress=gr.Progress(track_tqdm=True)):
    """ Visualize documents and their topics in 2D

    Arguments:
        topic_model: A fitted BERTopic instance.
        docs: The documents you used when calling either `fit` or `fit_transform`
        topics: A selection of topics to visualize.
                Not to be confused with the topics that you get from `.fit_transform`.
                For example, if you want to visualize only topics 1 through 5:
                `topics = [1, 2, 3, 4, 5]`.
        embeddings: The embeddings of all documents in `docs`.
        reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
        sample: The percentage of documents in each topic that you would like to keep.
                Value can be between 0 and 1. Setting this value to, for example,
                0.1 (10% of documents in each topic) makes it easier to visualize
                millions of documents as a subset is chosen.
        hide_annotations: Hide the names of the traces on top of each cluster.
        hide_document_hover: Hide the content of the documents when hovering over
                             specific points. Helps to speed up generation of visualization.
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
        title: Title of the plot.
        width: The width of the figure.
        height: The height of the figure.

    Examples:

    To visualize the topics simply run:

    ```python
    topic_model.visualize_documents(docs)
    ```

    Do note that this re-calculates the embeddings and reduces them to 2D.
    The advised and prefered pipeline for using this function is as follows:

    ```python
    from sklearn.datasets import fetch_20newsgroups
    from sentence_transformers import SentenceTransformer
    from bertopic import BERTopic
    from umap import UMAP

    # Prepare embeddings
    docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']
    sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
    embeddings = sentence_model.encode(docs, show_progress_bar=False)

    # Train BERTopic
    topic_model = BERTopic().fit(docs, embeddings)

    # Reduce dimensionality of embeddings, this step is optional
    # reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)

    # Run the visualization with the original embeddings
    topic_model.visualize_documents(docs, embeddings=embeddings)

    # Or, if you have reduced the original embeddings already:
    topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings)
    ```

    Or if you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings)
    fig.write_html("path/to/file.html")
    ```

    <iframe src="../../getting_started/visualization/documents.html"
    style="width:1000px; height: 800px; border: 0px;""></iframe>
    """
    topic_per_doc = topic_model.topics_

    # Add <br> tags to hover labels to get them to appear on multiple lines
    def wrap_by_word(s, n):
        '''returns a string up to 300 words where \\n is inserted between every n words'''
        a = s.split()[:300]
        ret = ''
        for i in range(0, len(a), n):
            ret += ' '.join(a[i:i+n]) + '<br>'
        return ret
    
    # Apply the function to every element in the list
    hover_labels = [wrap_by_word(s, n=20) for s in hover_labels]


    # Sample the data to optimize for visualization and dimensionality reduction
    if sample is None or sample > 1:
        sample = 1

    indices = []
    for topic in set(topic_per_doc):
        s = np.where(np.array(topic_per_doc) == topic)[0]
        size = len(s) if len(s) < 100 else int(len(s) * sample)
        indices.extend(np.random.choice(s, size=size, replace=False))
    indices = np.array(indices)

    df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
    df["doc"] = [docs[index] for index in indices]
    df["hover_labels"] = [hover_labels[index] for index in indices]
    df["topic"] = [topic_per_doc[index] for index in indices]

    # Extract embeddings if not already done
    if sample is None:
        if embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
        else:
            embeddings_to_reduce = embeddings
    else:
        if embeddings is not None:
            embeddings_to_reduce = embeddings[indices]
        elif embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")

    # Reduce input embeddings
    if reduced_embeddings is None:
        umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
        embeddings_2d = umap_model.embedding_
    elif sample is not None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings[indices]
    elif sample is None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings

    unique_topics = set(topic_per_doc)
    if topics is None:
        topics = unique_topics

    # Combine data
    df["x"] = embeddings_2d[:, 0]
    df["y"] = embeddings_2d[:, 1]

    # Prepare text and names
    trace_name_char_length = 60
    if isinstance(custom_labels, str):
        names = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in unique_topics]
        names = ["_".join([label[0] for label in labels[:4]]) for labels in names]
        names = [label if len(label) < 30 else label[:27] + "..." for label in names]
    elif topic_model.custom_labels_ is not None and custom_labels:
        #print("Using custom labels: ", topic_model.custom_labels_)
        #names = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in unique_topics]
        # Limit label length to 100 chars
        names = [label[:trace_name_char_length] for label in (topic_model.custom_labels_[topic + topic_model._outliers] for topic in unique_topics)]

    else:
        #print("Not using custom labels")
        # Limit label length to 100 chars
        names = [f"{topic} " + ", ".join([word for word, value in topic_model.get_topic(topic)][:3])[:trace_name_char_length] for topic in unique_topics]

        #names = [f"{topic} " + ", ".join([word for word, value in topic_model.get_topic(topic)][:3]) for topic in unique_topics]

    #print(names)

    # Visualize
    fig = go.Figure()

    # Outliers and non-selected topics
    non_selected_topics = set(unique_topics).difference(topics)
    if len(non_selected_topics) == 0:
        non_selected_topics = [-1]

    selection = df.loc[df.topic.isin(non_selected_topics), :]
    selection["text"] = ""
    selection.loc[len(selection), :] = [None, None, None, selection.x.mean(), selection.y.mean(), "Other documents"]

    fig.add_trace(
        go.Scattergl(
            x=selection.x,
            y=selection.y,
            hovertext=selection.hover_labels if not hide_document_hover else None,
            hoverinfo="text",
            mode='markers+text',
            name="other",
            showlegend=False,
            marker=dict(color='#CFD8DC', size=5, opacity=0.5),
            hoverlabel=dict(align='left')
        )
    )

    # Selected topics
    for name, topic in zip(names, unique_topics):
        #print(name)
        #print(topic)
        if topic in topics and topic != -1:
            selection = df.loc[df.topic == topic, :]
            selection["text"] = ""

            if not hide_annotations:
                selection.loc[len(selection), :] = [None, None, selection.x.mean(), selection.y.mean(), name]

            fig.add_trace(
                go.Scattergl(
                    x=selection.x,
                    y=selection.y,
                    hovertext=selection.hover_labels if not hide_document_hover else None,
                    hoverinfo="text",
                    text=selection.text,
                    mode='markers+text',
                    name=name,
                    textfont=dict(
                        size=12,
                    ),
                    marker=dict(size=5, opacity=0.5),
                    hoverlabel=dict(align='left')
            ))

    # Add grid in a 'plus' shape
    x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15))
    y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15))
    fig.add_shape(type="line",
                  x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1],
                  line=dict(color="#CFD8DC", width=2))
    fig.add_shape(type="line",
                  x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2,
                  line=dict(color="#9E9E9E", width=2))
    fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10)
    fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10)

    # Stylize layout
    fig.update_layout(
        template="simple_white",
        title={
            'text': f"{title}",
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=22,
                color="Black")
        },
        hoverlabel_align = 'left',
        width=width,
        height=height
    )

    fig.update_xaxes(visible=False)
    fig.update_yaxes(visible=False)
    return fig

def hierarchical_topics_custom(self,
                        docs: List[str],
                        linkage_function: Callable[[csr_matrix], np.ndarray] = None,
                        distance_function: Callable[[csr_matrix], csr_matrix] = None, progress=gr.Progress(track_tqdm=True)) -> pd.DataFrame:
    """ Create a hierarchy of topics

    To create this hierarchy, BERTopic needs to be already fitted once.
    Then, a hierarchy is calculated on the distance matrix of the c-TF-IDF
    representation using `scipy.cluster.hierarchy.linkage`.

    Based on that hierarchy, we calculate the topic representation at each
    merged step. This is a local representation, as we only assume that the
    chosen step is merged and not all others which typically improves the
    topic representation.

    Arguments:
        docs: The documents you used when calling either `fit` or `fit_transform`
        linkage_function: The linkage function to use. Default is:
                            `lambda x: sch.linkage(x, 'ward', optimal_ordering=True)`
        distance_function: The distance function to use on the c-TF-IDF matrix. Default is:
                            `lambda x: 1 - cosine_similarity(x)`.
                            You can pass any function that returns either a square matrix of 
                            shape (n_samples, n_samples) with zeros on the diagonal and 
                            non-negative values or condensed distance matrix of shape
                            (n_samples * (n_samples - 1) / 2,) containing the upper
                            triangular of the distance matrix.

    Returns:
        hierarchical_topics: A dataframe that contains a hierarchy of topics
                                represented by their parents and their children

    Examples:

    ```python
    from bertopic import BERTopic
    topic_model = BERTopic()
    topics, probs = topic_model.fit_transform(docs)
    hierarchical_topics = topic_model.hierarchical_topics(docs)
    ```

    A custom linkage function can be used as follows:

    ```python
    from scipy.cluster import hierarchy as sch
    from bertopic import BERTopic
    topic_model = BERTopic()
    topics, probs = topic_model.fit_transform(docs)

    # Hierarchical topics
    linkage_function = lambda x: sch.linkage(x, 'ward', optimal_ordering=True)
    hierarchical_topics = topic_model.hierarchical_topics(docs, linkage_function=linkage_function)
    ```
    """
    check_documents_type(docs)
    if distance_function is None:
        distance_function = lambda x: 1 - cosine_similarity(x)

    if linkage_function is None:
        linkage_function = lambda x: sch.linkage(x, 'ward', optimal_ordering=True)

    # Calculate distance
    embeddings = self.c_tf_idf_[self._outliers:]
    X = distance_function(embeddings)
    X = validate_distance_matrix(X, embeddings.shape[0])

    # Use the 1-D condensed distance matrix as an input instead of the raw distance matrix
    Z = linkage_function(X)

    # Calculate basic bag-of-words to be iteratively merged later
    documents = pd.DataFrame({"Document": docs,
                                "ID": range(len(docs)),
                                "Topic": self.topics_})
    documents_per_topic = documents.groupby(['Topic'], as_index=False).agg({'Document': ' '.join})
    documents_per_topic = documents_per_topic.loc[documents_per_topic.Topic != -1, :]
    clean_documents = self._preprocess_text(documents_per_topic.Document.values)

    # Scikit-Learn Deprecation: get_feature_names is deprecated in 1.0
    # and will be removed in 1.2. Please use get_feature_names_out instead.
    if version.parse(sklearn_version) >= version.parse("1.0.0"):
        words = self.vectorizer_model.get_feature_names_out()
    else:
        words = self.vectorizer_model.get_feature_names()

    bow = self.vectorizer_model.transform(clean_documents)

    # Extract clusters
    hier_topics = pd.DataFrame(columns=["Parent_ID", "Parent_Name", "Topics",
                                        "Child_Left_ID", "Child_Left_Name",
                                        "Child_Right_ID", "Child_Right_Name"])
    for index in tqdm(range(len(Z))):

        # Find clustered documents
        clusters = sch.fcluster(Z, t=Z[index][2], criterion='distance') - self._outliers
        nr_clusters = len(clusters)

        # Extract first topic we find to get the set of topics in a merged topic
        topic = None
        val = Z[index][0]
        while topic is None:
            if val - len(clusters) < 0:
                topic = int(val)
            else:
                val = Z[int(val - len(clusters))][0]
        clustered_topics = [i for i, x in enumerate(clusters) if x == clusters[topic]]

        # Group bow per cluster, calculate c-TF-IDF and extract words
        grouped = csr_matrix(bow[clustered_topics].sum(axis=0))
        c_tf_idf = self.ctfidf_model.transform(grouped)
        selection = documents.loc[documents.Topic.isin(clustered_topics), :]
        selection.Topic = 0
        words_per_topic = self._extract_words_per_topic(words, selection, c_tf_idf, calculate_aspects=False)

        # Extract parent's name and ID
        parent_id = index + len(clusters)
        parent_name = ", ".join([x[0] for x in words_per_topic[0]][:5])

        # Extract child's name and ID
        Z_id = Z[index][0]
        child_left_id = Z_id if Z_id - nr_clusters < 0 else Z_id - nr_clusters

        if Z_id - nr_clusters < 0:
            child_left_name = ", ".join([x[0] for x in self.get_topic(Z_id)][:5])
        else:
            child_left_name = hier_topics.iloc[int(child_left_id)].Parent_Name

        # Extract child's name and ID
        Z_id = Z[index][1]
        child_right_id = Z_id if Z_id - nr_clusters < 0 else Z_id - nr_clusters

        if Z_id - nr_clusters < 0:
            child_right_name = ", ".join([x[0] for x in self.get_topic(Z_id)][:5])
        else:
            child_right_name = hier_topics.iloc[int(child_right_id)].Parent_Name

        # Save results
        hier_topics.loc[len(hier_topics), :] = [parent_id, parent_name,
                                                clustered_topics,
                                                int(Z[index][0]), child_left_name,
                                                int(Z[index][1]), child_right_name]

    hier_topics["Distance"] = Z[:, 2]
    hier_topics = hier_topics.sort_values("Parent_ID", ascending=False)
    hier_topics[["Parent_ID", "Child_Left_ID", "Child_Right_ID"]] = hier_topics[["Parent_ID", "Child_Left_ID", "Child_Right_ID"]].astype(str)

    return hier_topics

def visualize_hierarchy_custom(topic_model,
                        orientation: str = "left",
                        topics: List[int] = None,
                        top_n_topics: int = None,
                        custom_labels: Union[bool, str] = False,
                        title: str = "<b>Hierarchical Clustering</b>",
                        width: int = 1000,
                        height: int = 600,
                        hierarchical_topics: pd.DataFrame = None,
                        linkage_function: Callable[[csr_matrix], np.ndarray] = None,
                        distance_function: Callable[[csr_matrix], csr_matrix] = None,
                        color_threshold: int = 1) -> go.Figure:
    """ Visualize a hierarchical structure of the topics

    A ward linkage function is used to perform the
    hierarchical clustering based on the cosine distance
    matrix between topic embeddings.

    Arguments:
        topic_model: A fitted BERTopic instance.
        orientation: The orientation of the figure.
                     Either 'left' or 'bottom'
        topics: A selection of topics to visualize
        top_n_topics: Only select the top n most frequent topics
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
                       NOTE: Custom labels are only generated for the original 
                       un-merged topics.
        title: Title of the plot.
        width: The width of the figure. Only works if orientation is set to 'left'
        height: The height of the figure. Only works if orientation is set to 'bottom'
        hierarchical_topics: A dataframe that contains a hierarchy of topics
                             represented by their parents and their children.
                             NOTE: The hierarchical topic names are only visualized
                             if both `topics` and `top_n_topics` are not set.
        linkage_function: The linkage function to use. Default is:
                          `lambda x: sch.linkage(x, 'ward', optimal_ordering=True)`
                          NOTE: Make sure to use the same `linkage_function` as used
                          in `topic_model.hierarchical_topics`.
        distance_function: The distance function to use on the c-TF-IDF matrix. Default is:
                           `lambda x: 1 - cosine_similarity(x)`.
                            You can pass any function that returns either a square matrix of 
                            shape (n_samples, n_samples) with zeros on the diagonal and 
                            non-negative values or condensed distance matrix of shape 
                            (n_samples * (n_samples - 1) / 2,) containing the upper 
                            triangular of the distance matrix.
                           NOTE: Make sure to use the same `distance_function` as used
                           in `topic_model.hierarchical_topics`.
        color_threshold: Value at which the separation of clusters will be made which
                         will result in different colors for different clusters.
                         A higher value will typically lead in less colored clusters.

    Returns:
        fig: A plotly figure

    Examples:

    To visualize the hierarchical structure of
    topics simply run:

    ```python
    topic_model.visualize_hierarchy()
    ```

    If you also want the labels visualized of hierarchical topics,
    run the following:

    ```python
    # Extract hierarchical topics and their representations
    hierarchical_topics = topic_model.hierarchical_topics(docs)

    # Visualize these representations
    topic_model.visualize_hierarchy(hierarchical_topics=hierarchical_topics)
    ```

    If you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_hierarchy()
    fig.write_html("path/to/file.html")
    ```
    <iframe src="../../getting_started/visualization/hierarchy.html"
    style="width:1000px; height: 680px; border: 0px;""></iframe>
    """
    if distance_function is None:
        distance_function = lambda x: 1 - cosine_similarity(x)

    if linkage_function is None:
        linkage_function = lambda x: sch.linkage(x, 'ward', optimal_ordering=True)

    # Select topics based on top_n and topics args
    freq_df = topic_model.get_topic_freq()
    freq_df = freq_df.loc[freq_df.Topic != -1, :]
    if topics is not None:
        topics = list(topics)
    elif top_n_topics is not None:
        topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
    else:
        topics = sorted(freq_df.Topic.to_list())

    # Select embeddings
    all_topics = sorted(list(topic_model.get_topics().keys()))
    indices = np.array([all_topics.index(topic) for topic in topics])

    # Select topic embeddings
    if topic_model.c_tf_idf_ is not None:
        embeddings = topic_model.c_tf_idf_[indices]
    else:
        embeddings = np.array(topic_model.topic_embeddings_)[indices]
        
    # Annotations
    if hierarchical_topics is not None and len(topics) == len(freq_df.Topic.to_list()):
        annotations = _get_annotations(topic_model=topic_model,
                                       hierarchical_topics=hierarchical_topics,
                                       embeddings=embeddings,
                                       distance_function=distance_function,
                                       linkage_function=linkage_function,
                                       orientation=orientation,
                                       custom_labels=custom_labels)
    else:
        annotations = None

    # wrap distance function to validate input and return a condensed distance matrix
    distance_function_viz = lambda x: validate_distance_matrix(
        distance_function(x), embeddings.shape[0])
    # Create dendogram
    fig = ff.create_dendrogram(embeddings,
                               orientation=orientation,
                               distfun=distance_function_viz,
                               linkagefun=linkage_function,
                               hovertext=annotations,
                               color_threshold=color_threshold)

    # Create nicer labels
    axis = "yaxis" if orientation == "left" else "xaxis"
    if isinstance(custom_labels, str):
        new_labels = [[[str(x), None]] + topic_model.topic_aspects_[custom_labels][x] for x in fig.layout[axis]["ticktext"]]
        new_labels = [", ".join([label[0] for label in labels[:4]]) for labels in new_labels]
        new_labels = [label if len(label) < 30 else label[:27] + "..." for label in new_labels]
    elif topic_model.custom_labels_ is not None and custom_labels:
        new_labels = [topic_model.custom_labels_[topics[int(x)] + topic_model._outliers] for x in fig.layout[axis]["ticktext"]]
    else:
        new_labels = [[[str(topics[int(x)]), None]] + topic_model.get_topic(topics[int(x)])
                      for x in fig.layout[axis]["ticktext"]]
        new_labels = [", ".join([label[0] for label in labels[:4]]) for labels in new_labels]
        new_labels = [label if len(label) < 30 else label[:27] + "..." for label in new_labels]

    # Stylize layout
    fig.update_layout(
        plot_bgcolor='#ECEFF1',
        template="plotly_white",
        title={
            'text': f"{title}",
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=22,
                color="Black")
        },
        hoverlabel=dict(
            bgcolor="white",
            font_size=16,
            font_family="Rockwell"
        ),
    )

    # Stylize orientation
    if orientation == "left":
        fig.update_layout(height=200 + (15 * len(topics)),
                          width=width,
                          yaxis=dict(tickmode="array",
                                     ticktext=new_labels))

        # Fix empty space on the bottom of the graph
        y_max = max([trace['y'].max() + 5 for trace in fig['data']])
        y_min = min([trace['y'].min() - 5 for trace in fig['data']])
        fig.update_layout(yaxis=dict(range=[y_min, y_max]))

    else:
        fig.update_layout(width=200 + (15 * len(topics)),
                          height=height,
                          xaxis=dict(tickmode="array",
                                     ticktext=new_labels))

    if hierarchical_topics is not None:
        for index in [0, 3]:
            axis = "x" if orientation == "left" else "y"
            xs = [data["x"][index] for data in fig.data if (data["text"] and data[axis][index] > 0)]
            ys = [data["y"][index] for data in fig.data if (data["text"] and data[axis][index] > 0)]
            hovertext = [data["text"][index] for data in fig.data if (data["text"] and data[axis][index] > 0)]

            fig.add_trace(go.Scatter(x=xs, y=ys, marker_color='black',
                                     hovertext=hovertext, hoverinfo="text",
                                     mode='markers', showlegend=False))
    return fig

def visualize_hierarchical_documents_custom(topic_model,
                                     docs: List[str],
                                     hover_labels: List[str],
                                     hierarchical_topics: pd.DataFrame,
                                     topics: List[int] = None,
                                     embeddings: np.ndarray = None,
                                     reduced_embeddings: np.ndarray = None,
                                     sample: Union[float, int] = None,
                                     hide_annotations: bool = False,
                                     hide_document_hover: bool = True,
                                     nr_levels: int = 10,
                                     level_scale: str = 'linear', 
                                     custom_labels: Union[bool, str] = False,
                                     title: str = "<b>Hierarchical Documents and Topics</b>",
                                     width: int = 1200,
                                     height: int = 750, progress=gr.Progress(track_tqdm=True)) -> go.Figure:
    """ Visualize documents and their topics in 2D at different levels of hierarchy

    Arguments:
        docs: The documents you used when calling either `fit` or `fit_transform`
        hierarchical_topics: A dataframe that contains a hierarchy of topics
                             represented by their parents and their children
        topics: A selection of topics to visualize.
                Not to be confused with the topics that you get from `.fit_transform`.
                For example, if you want to visualize only topics 1 through 5:
                `topics = [1, 2, 3, 4, 5]`.
        embeddings: The embeddings of all documents in `docs`.
        reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
        sample: The percentage of documents in each topic that you would like to keep.
                Value can be between 0 and 1. Setting this value to, for example,
                0.1 (10% of documents in each topic) makes it easier to visualize
                millions of documents as a subset is chosen.
        hide_annotations: Hide the names of the traces on top of each cluster.
        hide_document_hover: Hide the content of the documents when hovering over
                             specific points. Helps to speed up generation of visualizations.
        nr_levels: The number of levels to be visualized in the hierarchy. First, the distances
                   in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances. 
                   Then, for each list of distances, the merged topics are selected that have a 
                   distance less or equal to the maximum distance of the selected list of distances.
                   NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to
                   the length of `hierarchical_topics`.
        level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance 
                     vector. Linear scaling will perform an equal number of merges at each level 
                     while logarithmic scaling will perform more mergers in earlier levels to 
                     provide more resolution at higher levels (this can be used for when the number 
                     of topics is large). 
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
                       NOTE: Custom labels are only generated for the original 
                       un-merged topics.
        title: Title of the plot.
        width: The width of the figure.
        height: The height of the figure.

    Examples:

    To visualize the topics simply run:

    ```python
    topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
    ```

    Do note that this re-calculates the embeddings and reduces them to 2D.
    The advised and prefered pipeline for using this function is as follows:

    ```python
    from sklearn.datasets import fetch_20newsgroups
    from sentence_transformers import SentenceTransformer
    from bertopic import BERTopic
    from umap import UMAP

    # Prepare embeddings
    docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']
    sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
    embeddings = sentence_model.encode(docs, show_progress_bar=False)

    # Train BERTopic and extract hierarchical topics
    topic_model = BERTopic().fit(docs, embeddings)
    hierarchical_topics = topic_model.hierarchical_topics(docs)

    # Reduce dimensionality of embeddings, this step is optional
    # reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)

    # Run the visualization with the original embeddings
    topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)

    # Or, if you have reduced the original embeddings already:
    topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
    ```

    Or if you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
    fig.write_html("path/to/file.html")
    ```

    NOTE:
        This visualization was inspired by the scatter plot representation of Doc2Map:
        https://github.com/louisgeisler/Doc2Map

    <iframe src="../../getting_started/visualization/hierarchical_documents.html"
    style="width:1000px; height: 770px; border: 0px;""></iframe>
    """
    topic_per_doc = topic_model.topics_

    # Add <br> tags to hover labels to get them to appear on multiple lines
    def wrap_by_word(s, n):
        '''returns a string up to 300 words where \\n is inserted between every n words'''
        a = s.split()[:300]
        ret = ''
        for i in range(0, len(a), n):
            ret += ' '.join(a[i:i+n]) + '<br>'
        return ret
    
    # Apply the function to every element in the list
    hover_labels = [wrap_by_word(s, n=20) for s in hover_labels]

    # Sample the data to optimize for visualization and dimensionality reduction
    if sample is None or sample > 1:
        sample = 1

    indices = []
    for topic in set(topic_per_doc):
        s = np.where(np.array(topic_per_doc) == topic)[0]
        size = len(s) if len(s) < 100 else int(len(s)*sample)
        indices.extend(np.random.choice(s, size=size, replace=False))
    indices = np.array(indices)

    

    df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
    df["doc"] = [docs[index] for index in indices]
    df["hover_labels"] = [hover_labels[index] for index in indices]
    df["topic"] = [topic_per_doc[index] for index in indices]

    # Extract embeddings if not already done
    if sample is None:
        if embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
        else:
            embeddings_to_reduce = embeddings
    else:
        if embeddings is not None:
            embeddings_to_reduce = embeddings[indices]
        elif embeddings is None and reduced_embeddings is None:
            embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")

    # Reduce input embeddings
    if reduced_embeddings is None:
        umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
        embeddings_2d = umap_model.embedding_
    elif sample is not None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings[indices]
    elif sample is None and reduced_embeddings is not None:
        embeddings_2d = reduced_embeddings

    # Combine data
    df["x"] = embeddings_2d[:, 0]
    df["y"] = embeddings_2d[:, 1]

    # Create topic list for each level, levels are created by calculating the distance
    distances = hierarchical_topics.Distance.to_list()
    if level_scale == 'log' or level_scale == 'logarithmic':
        log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist()
        log_indices.reverse()
        max_distances = [distances[i] for i in log_indices]
    elif level_scale == 'lin' or level_scale == 'linear':
        max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1]
    else:
        raise ValueError("level_scale needs to be one of 'log' or 'linear'")
    
    for index, max_distance in enumerate(max_distances):

        # Get topics below `max_distance`
        mapping = {topic: topic for topic in df.topic.unique()}
        selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :]
        selection.Parent_ID = selection.Parent_ID.astype(int)
        selection = selection.sort_values("Parent_ID")

        for row in selection.iterrows():
            for topic in row[1].Topics:
                mapping[topic] = row[1].Parent_ID

        # Make sure the mappings are mapped 1:1
        mappings = [True for _ in mapping]
        while any(mappings):
            for i, (key, value) in enumerate(mapping.items()):
                if value in mapping.keys() and key != value:
                    mapping[key] = mapping[value]
                else:
                    mappings[i] = False

        # Create new column
        df[f"level_{index+1}"] = df.topic.map(mapping)
        df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int)

    # Prepare topic names of original and merged topics
    trace_names = []
    topic_names = {}
    trace_name_char_length = 60
    for topic in range(hierarchical_topics.Parent_ID.astype(int).max()):
        if topic < hierarchical_topics.Parent_ID.astype(int).min():
            if topic_model.get_topic(topic):
                if isinstance(custom_labels, str):
                    trace_name = f"{topic} " + ", ".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:5])
                elif topic_model.custom_labels_ is not None and custom_labels:
                    trace_name = topic_model.custom_labels_[topic + topic_model._outliers]
                else:
                    trace_name = f"{topic} " + ", ".join([word[:20] for word, _ in topic_model.get_topic(topic)][:5])
                topic_names[topic] = {"trace_name": trace_name[:trace_name_char_length], "plot_text": trace_name[:trace_name_char_length]}
                trace_names.append(trace_name)
        else:
            trace_name = f"{topic} " + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0]
            plot_text = ", ".join([name[:20] for name in trace_name.split(" ")[:5]])
            topic_names[topic] = {"trace_name": trace_name[:trace_name_char_length], "plot_text": plot_text[:trace_name_char_length]}
            trace_names.append(trace_name)

    # Prepare traces
    all_traces = []
    for level in range(len(max_distances)):
        traces = []

        # Outliers
        if topic_model._outliers:
            traces.append(
                    go.Scattergl(
                        x=df.loc[(df[f"level_{level+1}"] == -1), "x"],
                        y=df.loc[df[f"level_{level+1}"] == -1, "y"],
                        mode='markers+text',
                        name="other",
                        hoverinfo="text",
                        hovertext=df.loc[(df[f"level_{level+1}"] == -1), "hover_labels"] if not hide_document_hover else None,
                        showlegend=False,
                        marker=dict(color='#CFD8DC', size=5, opacity=0.5),
                        hoverlabel=dict(align='left')
                    )
                )

        # Selected topics
        if topics:
            selection = df.loc[(df.topic.isin(topics)), :]
            unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()])
        else:
            unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()])

        for topic in unique_topics:
            if topic != -1:
                if topics:
                    selection = df.loc[(df[f"level_{level+1}"] == topic) &
                                       (df.topic.isin(topics)), :]
                else:
                    selection = df.loc[df[f"level_{level+1}"] == topic, :]

                if not hide_annotations:
                    selection.loc[len(selection), :] = None
                    selection["text"] = ""
                    selection.loc[len(selection) - 1, "x"] = selection.x.mean()
                    selection.loc[len(selection) - 1, "y"] = selection.y.mean()
                    selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"]

                traces.append(
                    go.Scattergl(
                        x=selection.x,
                        y=selection.y,
                        text=selection.text if not hide_annotations else None,
                        hovertext=selection.hover_labels if not hide_document_hover else None,
                        hoverinfo="text",
                        name=topic_names[int(topic)]["trace_name"],
                        mode='markers+text',
                        marker=dict(size=5, opacity=0.5),
                        hoverlabel=dict(align='left')
                    )
                )

        all_traces.append(traces)

    # Track and count traces
    nr_traces_per_set = [len(traces) for traces in all_traces]
    trace_indices = [(0, nr_traces_per_set[0])]
    for index, nr_traces in enumerate(nr_traces_per_set[1:]):
        start = trace_indices[index][1]
        end = nr_traces + start
        trace_indices.append((start, end))

    # Visualization
    fig = go.Figure()
    for traces in all_traces:
        for trace in traces:
            fig.add_trace(trace)

    for index in range(len(fig.data)):
        if index >= nr_traces_per_set[0]:
            fig.data[index].visible = False

    # Create and add slider
    steps = []
    for index, indices in enumerate(trace_indices):
        step = dict(
            method="update",
            label=str(index),
            args=[{"visible": [False] * len(fig.data)}]
        )
        for index in range(indices[1]-indices[0]):
            step["args"][0]["visible"][index+indices[0]] = True
        steps.append(step)

    sliders = [dict(
        currentvalue={"prefix": "Level: "},
        pad={"t": 20},
        steps=steps
    )]

    # Add grid in a 'plus' shape
    x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15))
    y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15))
    fig.add_shape(type="line",
                  x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1],
                  line=dict(color="#CFD8DC", width=2))
    fig.add_shape(type="line",
                  x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2,
                  line=dict(color="#9E9E9E", width=2))
    fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10)
    fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10)

    # Stylize layout
    fig.update_layout(
        sliders=sliders,
        template="simple_white",
        title={
            'text': f"{title}",
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=22,
                color="Black")
        },
        width=width,
        height=height,
    )

    fig.update_xaxes(visible=False)
    fig.update_yaxes(visible=False)

    hierarchy_topics_df = df.filter(regex=r'topic|^level').drop_duplicates(subset="topic")

    topic_names = pd.DataFrame(topic_names).T


    return fig, hierarchy_topics_df, topic_names

def visualize_barchart_custom(topic_model,
                       topics: List[int] = None,
                       top_n_topics: int = 8,
                       n_words: int = 5,
                       custom_labels: Union[bool, str] = False,
                       title: str = "<b>Topic Word Scores</b>",
                       width: int = 250,
                       height: int = 250, progress=gr.Progress(track_tqdm=True)) -> go.Figure:
    """ Visualize a barchart of selected topics

    Arguments:
        topic_model: A fitted BERTopic instance.
        topics: A selection of topics to visualize.
        top_n_topics: Only select the top n most frequent topics.
        n_words: Number of words to show in a topic
        custom_labels: If bool, whether to use custom topic labels that were defined using 
                       `topic_model.set_topic_labels`.
                       If `str`, it uses labels from other aspects, e.g., "Aspect1".
        title: Title of the plot.
        width: The width of each figure.
        height: The height of each figure.

    Returns:
        fig: A plotly figure

    Examples:

    To visualize the barchart of selected topics
    simply run:

    ```python
    topic_model.visualize_barchart()
    ```

    Or if you want to save the resulting figure:

    ```python
    fig = topic_model.visualize_barchart()
    fig.write_html("path/to/file.html")
    ```
    <iframe src="../../getting_started/visualization/bar_chart.html"
    style="width:1100px; height: 660px; border: 0px;""></iframe>
    """
    colors = itertools.cycle(["#D55E00", "#0072B2", "#CC79A7", "#E69F00", "#56B4E9", "#009E73", "#F0E442"])

    # Select topics based on top_n and topics args
    freq_df = topic_model.get_topic_freq()
    freq_df = freq_df.loc[freq_df.Topic != -1, :]
    if topics is not None:
        topics = list(topics)
    elif top_n_topics is not None:
        topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
    else:
        topics = sorted(freq_df.Topic.to_list()[0:6])

    # Initialize figure
    if isinstance(custom_labels, str):
        subplot_titles = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in topics]
        subplot_titles = ["_".join([label[0] for label in labels[:4]]) for labels in subplot_titles]
        subplot_titles = [label if len(label) < 30 else label[:27] + "..." for label in subplot_titles]
    elif topic_model.custom_labels_ is not None and custom_labels:
        subplot_titles = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in topics]
    else:
        subplot_titles = [f"Topic {topic}" for topic in topics]
    columns = 3
    rows = int(np.ceil(len(topics) / columns))
    fig = make_subplots(rows=rows,
                        cols=columns,
                        shared_xaxes=False,
                        horizontal_spacing=.1,
                        vertical_spacing=.4 / rows if rows > 1 else 0,
                        subplot_titles=subplot_titles)

    # Add barchart for each topic
    row = 1
    column = 1
    for topic in topics:
        words = [word + "  " for word, _ in topic_model.get_topic(topic)][:n_words][::-1]
        scores = [score for _, score in topic_model.get_topic(topic)][:n_words][::-1]

        fig.add_trace(
            go.Bar(x=scores,
                   y=words,
                   orientation='h',
                   marker_color=next(colors)),
            row=row, col=column)

        if column == columns:
            column = 1
            row += 1
        else:
            column += 1

    # Stylize graph
    fig.update_layout(
        template="plotly_white",
        showlegend=False,
        title={
            'text': f"{title}",
            'x': .5,
            'xanchor': 'center',
            'yanchor': 'top',
            'font': dict(
                size=14,
                color="Black")
        },
        width=width*4,
        height=height*rows if rows > 1 else height * 1.3,
        hoverlabel=dict(
            bgcolor="white",
            font_size=14,
            font_family="Rockwell"
        ),
    )

    fig.update_xaxes(showgrid=True)
    fig.update_yaxes(showgrid=True)

    return fig