Spaces:
Running
Running
File size: 18,277 Bytes
9dbf344 4cfed8e 9dbf344 9eeba1e b4510a6 55f0ce3 b4510a6 9dbf344 55f0ce3 4effac0 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 4effac0 55f0ce3 1e2bb3e 55f0ce3 4effac0 1e2bb3e 55f0ce3 1e2bb3e 4effac0 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 9dbf344 5d87c3c b4510a6 9dbf344 b4510a6 9dbf344 b4510a6 9dbf344 b4510a6 9dbf344 5d87c3c b4510a6 9dbf344 b4510a6 9dbf344 5d87c3c 9dbf344 5d87c3c b4510a6 9dbf344 9c6425d 5d87c3c b4510a6 9dbf344 5d87c3c 9dbf344 9c6425d 5d87c3c b4510a6 9c6425d b4510a6 9c6425d b4510a6 5d87c3c 9eeba1e 55f0ce3 9dbf344 381f959 04a15c5 381f959 0a543a0 381f959 0a543a0 381f959 9dbf344 4cfed8e b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 55f0ce3 356791c 55f0ce3 1e2bb3e 55f0ce3 1e2bb3e 356791c 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 b4510a6 55f0ce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os
import zipfile
import re
import pandas as pd
import gradio as gr
import gzip
import pickle
import numpy as np
from bertopic import BERTopic
from datetime import datetime
from typing import List, Tuple
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
def get_or_create_env_var(var_name:str, default_value:str) -> str:
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set it to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
return value
# Retrieving or setting output folder
env_var_name = 'GRADIO_OUTPUT_FOLDER'
default_value = 'output/'
output_folder = get_or_create_env_var(env_var_name, default_value)
print(f'The value of {env_var_name} is {output_folder}')
def ensure_output_folder_exists():
"""Checks if the 'output/' folder exists, creates it if not."""
folder_name = "output/"
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print(f"Created the 'output/' folder.")
else:
print(f"The 'output/' folder already exists.")
async def get_connection_params(request: gr.Request):
base_folder = ""
if request:
#print("request user:", request.username)
#request_data = await request.json() # Parse JSON body
#print("All request data:", request_data)
#context_value = request_data.get('context')
#if 'context' in request_data:
# print("Request context dictionary:", request_data['context'])
# print("Request headers dictionary:", request.headers)
# print("All host elements", request.client)
# print("IP address:", request.client.host)
# print("Query parameters:", dict(request.query_params))
# To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/
#print("Request dictionary to object:", request.request.body())
print("Session hash:", request.session_hash)
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER
CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '')
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}')
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE
CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '')
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}')
if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
if CUSTOM_CLOUDFRONT_HEADER_var in request.headers:
supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var]
if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
print("Custom Cloudfront header found:", supplied_cloudfront_custom_value)
else:
raise(ValueError, "Custom Cloudfront header value does not match expected value.")
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash.
if request.username:
out_session_hash = request.username
base_folder = "user-files/"
elif 'x-cognito-id' in request.headers:
out_session_hash = request.headers['x-cognito-id']
base_folder = "user-files/"
print("Cognito ID found:", out_session_hash)
else:
out_session_hash = request.session_hash
base_folder = "temp-files/"
# print("Cognito ID not found. Using session hash as save folder:", out_session_hash)
output_folder = base_folder + out_session_hash + "/"
#if bucket_name:
# print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder)
return out_session_hash, output_folder
else:
print("No session parameters found.")
return "",""
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
elif filename.endswith('.pkl'):
return 'pkl'
elif filename.endswith('.npz'):
return 'npz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename, low_memory=False)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#file = pd.read_pickle(filename)
elif file_type == 'pkl':
file = BERTopic.load(filename)
elif file_type == 'npz':
file = np.load(filename)['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in filename:
file /= 100
print("File load complete")
return file
def initial_file_load(in_file):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
new_choices = []
concat_choices = []
custom_labels = pd.DataFrame()
topic_model = None
embeddings = np.array([])
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "npz" not in string.lower() and "pkl" not in string.lower() and "topic_list.csv" not in string.lower()]
if data_file_names:
data_file_name = data_file_names[0]
df = read_file(data_file_name)
data_file_name_no_ext = get_file_path_end(data_file_name)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
output_text = "Data file loaded."
else:
error = "No data file provided."
print(error)
output_text = error
model_file_names = [string for string in file_list if "pkl" in string.lower()]
if model_file_names:
model_file_name = model_file_names[0]
topic_model = read_file(model_file_name)
output_text = "Bertopic model loaded."
embedding_file_names = [string for string in file_list if "npz" in string.lower()]
if embedding_file_names:
embedding_file_name = embedding_file_names[0]
embeddings = read_file(embedding_file_name)
output_text = "Embeddings loaded."
label_file_names = [string for string in file_list if "topic_list" in string.lower()]
if label_file_names:
label_file_name = label_file_names[0]
custom_labels = read_file(label_file_name)
output_text = "Labels loaded."
#The np.array([]) at the end is for clearing the embedding state when a new file is loaded
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, output_text, topic_model, embeddings, data_file_name_no_ext, custom_labels, df
def custom_regex_load(in_file):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
custom_regex = pd.DataFrame()
file_list = [string.name for string in in_file]
regex_file_names = [string for string in file_list if "csv" in string.lower()]
if regex_file_names:
regex_file_name = regex_file_names[0]
custom_regex = pd.read_csv(regex_file_name, low_memory=False, header=None)
#regex_file_name_no_ext = get_file_path_end(regex_file_name)
output_text = "Data file loaded."
print(output_text)
else:
error = "No regex file provided."
print(error)
output_text = error
return error, custom_regex
return output_text, custom_regex
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
# Zip the above to export file
def zip_folder(folder_path, output_zip_file):
# Create a ZipFile object in write mode
with zipfile.ZipFile(output_zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Walk through the directory
for root, dirs, files in os.walk(folder_path):
for file in files:
# Create a complete file path
file_path = os.path.join(root, file)
# Add file to the zip file
# The arcname argument sets the archive name, i.e., the name within the zip file
zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path))
def delete_files_in_folder(folder_path):
# Check if the folder exists
if not os.path.exists(folder_path):
print(f"The folder {folder_path} does not exist.")
return
# Iterate over all files in the folder and remove each
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
else:
print(f"Skipping {file_path} as it is a directory")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def save_topic_outputs(topic_model: BERTopic, data_file_name_no_ext: str, output_list: List[str], docs: List[str], save_topic_model: bool, prepared_docs: pd.DataFrame, split_sentence_drop: str, output_folder: str = output_folder, progress: gr.Progress = gr.Progress()) -> Tuple[List[str], str]:
"""
Save the outputs of a topic model to specified files.
Args:
topic_model (BERTopic): The topic model object.
data_file_name_no_ext (str): The base name of the data file without extension.
output_list (List[str]): List to store the output file names.
docs (List[str]): List of documents.
save_topic_model (bool): Flag to save the topic model.
prepared_docs (pd.DataFrame): DataFrame containing prepared documents.
split_sentence_drop (str): Option to split sentences ("Yes" or "No").
output_folder (str, optional): Folder to save the output files. Defaults to output_folder.
progress (gr.Progress, optional): Progress tracker. Defaults to gr.Progress().
Returns:
Tuple[List[str], str]: A tuple containing the list of output file names and a status message.
"""
progress(0.7, desc= "Checking data")
topic_dets = topic_model.get_topic_info()
if topic_dets.shape[0] == 1:
topic_det_output_name = output_folder + "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
return output_list, "No topics found, original file returned"
progress(0.8, desc= "Saving output")
topic_det_output_name = output_folder + "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
doc_det_output_name = output_folder + "doc_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
## Check that the following columns exist in the dataframe, keep only the ones that exist
columns_to_check = ["Document", "Topic", "Name", "Probability", "Representative_document"]
columns_found = [column for column in columns_to_check if column in topic_model.get_document_info(docs).columns]
doc_dets = topic_model.get_document_info(docs)[columns_found]
### If there are full topic probabilities, join these on to the document details df
def is_valid_dataframe(df):
"""
Checks if the given object is a non-empty pandas DataFrame.
Args:
df: The object to check.
Returns:
True if df is a non-empty DataFrame, False otherwise.
"""
if df is None: # Check for None first
return False
return isinstance(df, pd.DataFrame) and not df.empty
if is_valid_dataframe(topic_model.probabilities_):
doc_dets = doc_dets.merge(topic_model.probabilities_, left_index=True, right_index=True, how="left")
# If you have created a 'sentence split' dataset from the cleaning options, map these sentences back to the original document.
try:
if split_sentence_drop == "Yes":
doc_dets = doc_dets.merge(prepared_docs[['document_index']], how = "left", left_index=True, right_index=True)
doc_dets = doc_dets.rename(columns={"document_index": "parent_document_index"}, errors='ignore')
# 1. Group by Parent Document Index:
grouped = doc_dets.groupby('parent_document_index')
# 2. Aggregate Topics and Probabilities:
# def aggregate_topics(group):
# original_text = ' '.join(group['Document'])
# topics = group['Topic'].tolist()
# if 'Name' in group.columns:
# topic_names = group['Name'].tolist()
# else:
# topic_names = None
# if 'Probability' in group.columns:
# probabilities = group['Probability'].tolist()
# else:
# probabilities = None # Or any other default value you prefer
# return pd.Series({'Document':original_text, 'Topic numbers': topics, 'Topic names': topic_names, 'Probabilities': probabilities})
def aggregate_topics(group):
original_text = ' '.join(group['Document'])
# Filter out topics starting with '-1'
topics = [topic for topic in group['Topic'].tolist() if not str(topic).startswith('-1')]
if 'Name' in group.columns:
# Filter out topic names corresponding to excluded topics
topic_names = [name for topic, name in zip(group['Topic'], group['Name'].tolist()) if not str(topic).startswith('-1')]
else:
topic_names = None
if 'Probability' in group.columns:
# Filter out probabilities corresponding to excluded topics
probabilities = [prob for topic, prob in zip(group['Topic'], group['Probability'].tolist()) if not str(topic).startswith('-1')]
else:
probabilities = None
return pd.Series({'Document': original_text, 'Topic numbers': topics, 'Topic names': topic_names, 'Probabilities': probabilities})
#result_df = grouped.apply(aggregate_topics).reset_index()
doc_det_agg = grouped.apply(lambda x: aggregate_topics(x)).reset_index()
# Join back original text
#doc_det_agg = doc_det_agg.merge(original_data[[in_colnames_list_first]], how = "left", left_index=True, right_index=True)
doc_det_agg_output_name = output_folder + "doc_details_agg_" + data_file_name_no_ext + "_" + today_rev + ".csv"
doc_det_agg.to_csv(doc_det_agg_output_name)
output_list.append(doc_det_agg_output_name)
except Exception as e:
print("Creating aggregate document details failed, error:", e)
# Save document details to file
doc_dets.to_csv(doc_det_output_name)
output_list.append(doc_det_output_name)
if "CustomName" in topic_dets.columns:
topics_text_out_str = str(topic_dets["CustomName"])
else:
topics_text_out_str = str(topic_dets["Name"])
output_text = "Topics: " + topics_text_out_str
# Save topic model to file
if save_topic_model == "Yes":
print("Saving BERTopic model in .pkl format.")
#folder_path = output_folder #"output_model/"
#if not os.path.exists(folder_path):
# Create the folder
# os.makedirs(folder_path)
topic_model_save_name_pkl = output_folder + data_file_name_no_ext + "_topics_" + today_rev + ".pkl"# + ".safetensors"
topic_model_save_name_zip = topic_model_save_name_pkl + ".zip"
# Clear folder before replacing files
#delete_files_in_folder(topic_model_save_name_pkl)
topic_model.save(topic_model_save_name_pkl, serialization='pickle', save_embedding_model=False, save_ctfidf=False)
# Zip file example
#zip_folder(topic_model_save_name_pkl, topic_model_save_name_zip)
output_list.append(topic_model_save_name_pkl)
return output_list, output_text
|