File size: 3,051 Bytes
0fd155c
00db72b
04a15c5
d34af22
49e0db8
04a15c5
0fd155c
c9da99d
7d5387e
0fd155c
c9da99d
9dbf344
 
 
97913c4
51ba1cb
9dbf344
49e0db8
08eb30d
 
90553eb
08eb30d
00db72b
 
 
04a15c5
0fd155c
 
 
04a15c5
c9da99d
 
0fd155c
00db72b
04a15c5
0fd155c
 
 
c9da99d
 
 
0fd155c
 
 
3c1c3de
22ca76e
08eb30d
22ca76e
0fd155c
 
 
04a15c5
0fd155c
9dbf344
04a15c5
0fd155c
9dbf344
0fd155c
51ba1cb
0fd155c
 
 
 
 
 
 
 
 
 
 
 
 
9dbf344
 
 
0fd155c
9dbf344
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Stage 1: Build dependencies and download models
FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm AS builder

# Install Lambda web adapter in case you want to run with with an AWS Lamba function URL (not essential if not using Lambda)
#COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.4 /lambda-adapter /opt/extensions/lambda-adapter

# Install system dependencies
RUN apt-get update && rm -rf /var/lib/apt/lists/*

# Create directories (if needed for model download script)
RUN mkdir -p /model/rep /model/embed /install

WORKDIR /src

# Copy requirements file and install dependencies. Sentence transformers and Bertopic are installed without dependencies so that torch is not reinstalled.
COPY requirements_aws.txt .

RUN pip install torch==2.5.1+cpu --target=/install --index-url https://download.pytorch.org/whl/cpu \
&& pip install --no-cache-dir --target=/install sentence-transformers==3.2.0 --no-deps \
&& pip install --no-cache-dir --target=/install bertopic==0.16.4 --no-deps \
&& pip install --no-cache-dir --target=/install -r requirements_aws.txt \
&& pip install --no-cache-dir --target=/install gradio==5.6.0

# Add /install to the PYTHONPATH
ENV PYTHONPATH="/install:${PYTHONPATH}"

# Download models (using your download_model.py script)
COPY download_model.py /src/download_model.py
RUN python /src/download_model.py

RUN rm requirements_aws.txt download_model.py

# Stage 2: Final runtime image
FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm

# Create a non-root user
RUN useradd -m -u 1000 user

# Copy installed packages from builder stage
COPY --from=builder /install /usr/local/lib/python3.11/site-packages/

# Create necessary directories and set ownership
RUN mkdir -p /home/user/app/output /home/user/.cache/huggingface/hub /home/user/.cache/matplotlib /home/user/app/cache \
    && chown -R user:user /home/user

# Download the quantised phi model directly with curl. Changed at it is so big - not loaded
#RUN curl -L -o /home/user/app/model/rep/Llama-3.2-3B-Instruct-Q5_K_M.gguf https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/tree/main/Llama-3.2-3B-Instruct-Q5_K_M.gguf

# Copy models from the builder stage
COPY --from=builder /model/rep /home/user/app/model/rep
COPY --from=builder /model/embed /home/user/app/model/embed

# Switch to the non-root user
USER user

# Set environment variables
ENV HOME=/home/user \
    PATH=/home/user/.local/bin:$PATH \
    PYTHONPATH=/home/user/app \
    PYTHONUNBUFFERED=1 \
    PYTHONDONTWRITEBYTECODE=1 \
    GRADIO_ALLOW_FLAGGING=never \
    GRADIO_NUM_PORTS=1 \
    GRADIO_SERVER_NAME=0.0.0.0 \
    GRADIO_SERVER_PORT=7860 \
    GRADIO_THEME=huggingface \
    AWS_STS_REGIONAL_ENDPOINT=regional \
    GRADIO_OUTPUT_FOLDER='output/' \
    NUMBA_CACHE_DIR=/home/user/app/cache \
    SYSTEM=spaces

# Set working directory and copy application code
WORKDIR $HOME/app
COPY --chown=user . $HOME/app

# Command to run your application
CMD ["python", "app.py"]