File size: 38,437 Bytes
4effac0
 
 
 
 
 
 
 
 
 
55f0ce3
 
 
 
04a15c5
34f1e83
55f0ce3
e1c1f68
22ca76e
55f0ce3
4effac0
 
 
55f0ce3
 
 
 
4effac0
 
 
 
 
22ca76e
34f1e83
22ca76e
34f1e83
4effac0
 
34f1e83
 
4effac0
55f0ce3
 
 
 
 
 
 
 
 
 
34f1e83
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
1e2bb3e
55f0ce3
34f1e83
55f0ce3
 
 
 
 
4effac0
 
 
 
 
 
34f1e83
 
 
 
4effac0
 
 
55f0ce3
4effac0
 
 
 
 
 
cc495e1
4effac0
cc495e1
90553eb
cc495e1
4effac0
cc495e1
 
 
4effac0
cc495e1
 
 
4effac0
cc495e1
4effac0
cc495e1
 
55f0ce3
cc495e1
 
 
55f0ce3
cc495e1
 
 
4effac0
cc495e1
 
 
4effac0
cc495e1
 
4effac0
cc495e1
4effac0
cc495e1
 
 
 
 
 
 
4effac0
cc495e1
 
4effac0
cc495e1
 
4effac0
cc495e1
 
 
4effac0
cc495e1
4effac0
cc495e1
1e2bb3e
cc495e1
 
04a15c5
cc495e1
04a15c5
cc495e1
 
 
 
 
 
 
 
 
 
 
 
04a15c5
cc495e1
 
1e2bb3e
cc495e1
04a15c5
cc495e1
89c4d20
55f0ce3
4effac0
 
 
 
 
 
 
 
 
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c4d20
 
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c4d20
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4effac0
 
 
 
55f0ce3
 
4effac0
34f1e83
 
 
 
 
 
4effac0
 
 
 
 
 
 
1e2bb3e
 
 
4effac0
 
 
 
e1c1f68
4effac0
 
 
 
 
 
 
 
 
55f0ce3
 
04a15c5
 
0a543a0
 
 
 
 
04a15c5
4effac0
 
cc495e1
4effac0
87306c7
4effac0
 
cc495e1
 
 
 
0a543a0
04a15c5
 
0a543a0
 
 
4effac0
e1c1f68
cc495e1
 
4effac0
cc495e1
4effac0
89c4d20
 
 
 
 
 
 
 
 
 
 
34f1e83
 
 
 
89c4d20
 
 
 
 
 
 
 
4effac0
 
 
 
 
e1c1f68
4effac0
 
 
 
90553eb
4effac0
 
 
 
 
 
 
 
 
 
 
381f959
1e2bb3e
381f959
55f0ce3
381f959
 
 
e1c1f68
 
4effac0
 
55f0ce3
 
 
4effac0
 
 
 
55f0ce3
 
 
4effac0
55f0ce3
4effac0
 
 
 
55f0ce3
 
4effac0
 
 
 
 
 
 
 
 
 
 
 
 
 
381f959
1e2bb3e
 
 
 
381f959
55f0ce3
381f959
 
 
e1c1f68
 
4effac0
 
55f0ce3
 
 
4effac0
 
 
 
 
e1c1f68
4effac0
e1c1f68
4effac0
 
 
 
 
 
 
 
 
 
 
e1c1f68
4effac0
e1c1f68
4effac0
 
 
e1c1f68
55f0ce3
1e2bb3e
55f0ce3
 
 
 
 
 
e1c1f68
4effac0
 
 
 
 
 
 
 
 
 
55f0ce3
4effac0
89c4d20
4effac0
 
 
 
 
e1c1f68
4effac0
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4effac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381f959
e1c1f68
 
 
 
 
 
381f959
4effac0
 
 
 
55f0ce3
4effac0
 
 
 
 
 
 
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4effac0
 
 
 
 
55f0ce3
 
 
4effac0
55f0ce3
4effac0
e1c1f68
4effac0
 
 
 
 
 
 
 
 
55f0ce3
4effac0
 
 
 
 
 
 
 
e1c1f68
4effac0
 
 
55f0ce3
4effac0
 
 
 
 
 
 
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4effac0
 
 
 
55f0ce3
4effac0
 
e1c1f68
4effac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f0ce3
 
4effac0
 
 
55f0ce3
4effac0
 
55f0ce3
4effac0
 
55f0ce3
 
4effac0
55f0ce3
 
 
 
 
 
 
4effac0
55f0ce3
 
4effac0
55f0ce3
 
 
 
 
 
4effac0
 
 
e1c1f68
4effac0
d80c8f5
 
 
55f0ce3
d80c8f5
 
 
 
381f959
d80c8f5
 
55f0ce3
 
 
 
381f959
 
4effac0
55f0ce3
 
 
 
 
 
 
 
 
 
 
 
e1c1f68
 
55f0ce3
d80c8f5
e1c1f68
 
 
55f0ce3
d80c8f5
e1c1f68
 
4effac0
55f0ce3
4effac0
 
 
55f0ce3
4effac0
 
 
 
55f0ce3
 
 
 
4effac0
55f0ce3
 
 
4effac0
55f0ce3
 
 
 
 
 
 
 
4effac0
 
55f0ce3
 
4effac0
 
 
55f0ce3
4effac0
 
 
 
 
 
 
55f0ce3
4effac0
 
 
55f0ce3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
# Dendrograms will not work with the latest version of scipy (1.12.0), so installing the version prior to be safe
#os.system("pip install scipy==1.11.4")

import gradio as gr
from datetime import datetime
import pandas as pd
import numpy as np
import time
from bertopic import BERTopic

from typing import List, Type, Union
PandasDataFrame = Type[pd.DataFrame]

from funcs.clean_funcs import initial_clean, regex_clean
from funcs.anonymiser import expand_sentences_spacy
from funcs.helper_functions import read_file, zip_folder, delete_files_in_folder, save_topic_outputs, output_folder, get_or_create_env_var, custom_regex_load
from funcs.embeddings import make_or_load_embeddings, torch_device
from funcs.bertopic_vis_documents import visualize_documents_custom, visualize_hierarchical_documents_custom, hierarchical_topics_custom, visualize_hierarchy_custom
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag, random_seed, RUNNING_ON_AWS
from sklearn.feature_extraction.text import CountVectorizer
import funcs.anonymiser as anon
from umap import UMAP

# Default options can be changed in number selection on options page
umap_n_neighbours = 15
umap_min_dist = 0.0
umap_metric = 'cosine'

today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")

# Load embeddings
if RUNNING_ON_AWS=="0":
    embeddings_name = "mixedbread-ai/mxbai-embed-xsmall-v1" #"mixedbread-ai/mxbai-embed-large-v1"
else:
    embeddings_name = "mixedbread-ai/mxbai-embed-xsmall-v1"

# LLM model used for representing topics
hf_model_name = "bartowski/Llama-3.2-3B-Instruct-GGUF" #"bartowski/Phi-3.1-mini-128k-instruct-GGUF"
hf_model_file = "Llama-3.2-3B-Instruct-Q5_K_M.gguf" #"Phi-3.1-mini-128k-instruct-Q4_K_M.gguf"

# When topic modelling column is chosen, change the default visualisation column to the same
def change_default_vis_col(in_colnames:List[str]):
    '''

    When topic modelling column is chosen, change the default visualisation column to the same

    '''
    if in_colnames:
        return gr.Dropdown(value=in_colnames[0])
    else:
        return gr.Dropdown()

def pre_clean(data: pd.DataFrame, in_colnames: list, data_file_name_no_ext: str, custom_regex: pd.DataFrame, clean_text: str, drop_duplicate_text: str, anonymise_drop: str, sentence_split_drop: str, min_sentence_length: int, embeddings_state: dict, output_folder: str = output_folder, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> tuple:
    """

    Pre-processes the input data by cleaning text, removing duplicates, anonymizing data, and splitting sentences based on the provided options.



    Args:

        data (pd.DataFrame): The input data to be cleaned.

        in_colnames (list): List of column names to be used for cleaning and finding topics.

        data_file_name_no_ext (str): The base name of the data file without extension.

        custom_regex (pd.DataFrame): Custom regex patterns for initial cleaning.

        clean_text (str): Option to clean text ("Yes" or "No").

        drop_duplicate_text (str): Option to drop duplicate text ("Yes" or "No").

        anonymise_drop (str): Option to anonymize data ("Yes" or "No").

        sentence_split_drop (str): Option to split text into sentences ("Yes" or "No").

        min_sentence_length (int): Minimum length of sentences after split (integer value of character length)

        embeddings_state (dict): State of the embeddings.

        output_folder (str, optional): Output folder. Defaults to output_folder.

        progress (gr.Progress, optional): Progress tracker for the cleaning process.



    Returns:

        tuple: A tuple containing the error message (if any), cleaned data, updated file name, and embeddings state.

    """
    
    output_text = ""
    output_list = []

    progress(0, desc = "Cleaning data")

    # If custom_regex is a string, assume this is a string path, and load in the data from the path
    if isinstance(custom_regex, str):
       custom_regex_text, custom_regex =  custom_regex_load(custom_regex)

    if not in_colnames:
        error_message = "Please enter one column name to use for cleaning and finding topics."
        print(error_message)
        return error_message, None, data_file_name_no_ext, None, None, embeddings_state

    all_tic = time.perf_counter()

    output_list = []
    #file_list = [string.name for string in in_files]

    for in_colnames_list_first in in_colnames:

        print("Cleaning column:", in_colnames_list_first)

        #in_colnames_list_first = in_colnames[0]

        # Reset original index to a new column so you can link it to data outputted from cleaning
        if not "original_index" in data.columns:
            data = data.reset_index(names="original_index")

        if clean_text == "Yes":
            clean_tic = time.perf_counter()
            print("Starting data clean.")

            data[in_colnames_list_first] = initial_clean(data[in_colnames_list_first], [])

            if '_clean' not in data_file_name_no_ext:
                data_file_name_no_ext = data_file_name_no_ext + "_clean"

            clean_toc = time.perf_counter()
            clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
            print(clean_time_out)

        # Clean custom regex if exists
        if not custom_regex.empty:
            data[in_colnames_list_first] = regex_clean(data[in_colnames_list_first], custom_regex.iloc[:, 0].to_list())

            if '_clean' not in data_file_name_no_ext:
                data_file_name_no_ext = data_file_name_no_ext + "_clean"
            

        if drop_duplicate_text == "Yes":
            progress(0.3, desc= "Drop duplicates - remove short texts")

            data_file_name_no_ext = data_file_name_no_ext + "_dedup"

            #print("Removing duplicates and short entries from data")
            #print("Data shape before: ", data.shape)
            data[in_colnames_list_first] = data[in_colnames_list_first].str.strip()
            data = data[data[in_colnames_list_first].str.len() >= 50]
            data = data.drop_duplicates(subset = in_colnames_list_first).dropna(subset= in_colnames_list_first).reset_index()
            
            #print("Data shape after duplicate/null removal: ", data.shape)

        if anonymise_drop == "Yes":
            progress(0.4, desc= "Anonymising data")

            if '_anon' not in data_file_name_no_ext:
                data_file_name_no_ext = data_file_name_no_ext + "_anon"

            anon_tic = time.perf_counter()
            
            data_anon_col, anonymisation_success = anon.anonymise_script(data, in_colnames_list_first, anon_strat="redact")

            data[in_colnames_list_first] = data_anon_col

            print(anonymisation_success)

            anon_toc = time.perf_counter()
            time_out = f"Anonymising text took {anon_toc - anon_tic:0.1f} seconds"

            print(time_out)

        if sentence_split_drop == "Yes":
            progress(0.6, desc= "Splitting text into sentences")

            if '_split' not in data_file_name_no_ext:
                data_file_name_no_ext = data_file_name_no_ext + "_split"

            anon_tic = time.perf_counter()
            
            data = expand_sentences_spacy(data, in_colnames_list_first)
            data = data[data[in_colnames_list_first].str.len() > min_sentence_length] # Keep only rows with at more than 5 characters
            data[in_colnames_list_first] = data[in_colnames_list_first].str.strip()
            data.reset_index(inplace=True, drop=True)

            anon_toc = time.perf_counter()
            time_out = f"Splitting text took {anon_toc - anon_tic:0.1f} seconds"

            print(time_out)

            data[in_colnames_list_first] = data[in_colnames_list_first].str.strip()

    out_data_name = output_folder + data_file_name_no_ext + "_" + today_rev +  ".csv"
    data.to_csv(out_data_name)
    output_list.append(out_data_name)

    all_toc = time.perf_counter()
    time_out = f"All processes took {all_toc - all_tic:0.1f} seconds."
    print(time_out)

    output_text = "Data clean completed."
    
    # Overwrite existing embeddings as they will likely have changed
    return output_text, output_list, data, data_file_name_no_ext, np.array([])

def optimise_zero_shot():
    """

    Return options that optimise the topic model to keep only zero-shot topics as the main topics

    """
    return gr.Dropdown(value="Yes"), gr.Slider(value=2), gr.Slider(value=2), gr.Slider(value=0.01), gr.Slider(value=0.95), gr.Slider(value=0.55)

def extract_topics(

    data: pd.DataFrame, 

    in_files: list, 

    min_docs_slider: int, 

    in_colnames: list, 

    max_topics_slider: int, 

    candidate_topics: list, 

    data_file_name_no_ext: str, 

    custom_labels_df: pd.DataFrame, 

    return_intermediate_files: str, 

    embeddings_super_compress: str, 

    high_quality_mode: str, 

    save_topic_model: str, 

    embeddings_out: np.ndarray, 

    embeddings_type_state: str, 

    zero_shot_similarity: float,

    calc_probs: str, 

    vectoriser_state: CountVectorizer, 

    min_word_occurence_slider: float, 

    max_word_occurence_slider: float, 

    split_sentence_drop: str,

    random_seed: int = random_seed,

    return_only_embeddings_drop: str = "No",

    output_folder: str = output_folder, 

    umap_n_neighbours:int = umap_n_neighbours,

    umap_min_dist:float = umap_min_dist,

    umap_metric:str = umap_metric,

    progress: gr.Progress = gr.Progress(track_tqdm=True)

) -> tuple:
    """

    Extract topics from the given data using various parameters and settings.



    Args:

        data (pd.DataFrame): The input data.

        in_files (list): List of input files.

        min_docs_slider (int): Minimum number of similar documents needed to make a topic.

        in_colnames (list): List of column names to use for cleaning and finding topics.

        max_topics_slider (int): Maximum number of topics.

        candidate_topics (list): List of candidate topics.

        data_file_name_no_ext (str): Data file name without extension.

        custom_labels_df (pd.DataFrame): DataFrame containing custom labels.

        return_intermediate_files (str): Whether to return intermediate files.

        embeddings_super_compress (str): Whether to round embeddings to three decimal places.

        high_quality_mode (str): Whether to use high quality (transformers based) embeddings.

        save_topic_model (str): Whether to save the topic model.

        embeddings_out (np.ndarray): Output embeddings.

        embeddings_type_state (str): State of the embeddings type.

        zero_shot_similarity (float): Zero-shot similarity threshold.

        random_seed (int): Random seed for reproducibility.

        return_only_embeddings_drop (str): If you only want to output embeddings.

        calc_probs (str): Whether to calculate all topic probabilities.

        vectoriser_state (CountVectorizer): Vectorizer state.

        min_word_occurence_slider (float): Minimum word occurrence slider value.

        max_word_occurence_slider (float): Maximum word occurrence slider value.

        split_sentence_drop (str): Whether to split open text into sentences.

        original_data_state (pd.DataFrame): Original data state.

        output_folder (str, optional): Output folder. Defaults to output_folder.

        umap_n_neighbours (int): Nearest neighbours value for UMAP.

        umap_min_dist (float): Minimum distance for UMAP.

        umap_metric (str): Metric for UMAP.

        progress (gr.Progress, optional): Progress tracker. Defaults to gr.Progress(track_tqdm=True).



    Returns:

        tuple: A tuple containing output text, output list, data, data file name without extension, and an empty numpy array.

    """
    all_tic = time.perf_counter()

    progress(0, desc= "Loading data")

    vectoriser_state = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=min_word_occurence_slider, max_df=max_word_occurence_slider)

    output_list = []

    # If in_file is a string file path, otherwise assume it is a Gradio file input component
    if isinstance(in_files, str):
        file_list = [in_files]
    else:
        file_list = [string.name for string in in_files]

    if calc_probs == "No":
        calc_probs = False

    elif calc_probs == "Yes":
        print("Calculating all probabilities.")
        calc_probs = True
        
    if max_topics_slider == 0:
        max_topics_slider = 'auto'

    if not in_colnames:
        error_message = "Please enter one column name to use for cleaning and finding topics."
        print(error_message)
        return error_message, None, data_file_name_no_ext, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, None, vectoriser_state, []

    in_colnames_list_first = in_colnames[0]

    docs = list(data[in_colnames_list_first])

    # Check if embeddings are being loaded in 
    progress(0.2, desc= "Loading/creating embeddings")


    if high_quality_mode == "Yes":
        print("Using high quality embedding model")

        #embedding_model = SentenceTransformer(embeddings_name, truncate_dim=512)       

        # If tfidf embeddings currently exist, wipe these empty
        if embeddings_type_state == "tfidf":
            embeddings_out = np.array([])

        embeddings_type_state = "large"

        # UMAP model uses Bertopic defaults
        #umap_model = UMAP(n_neighbors=umap_n_neighbours, n_components=5, min_dist=umap_min_dist, metric=umap_metric, low_memory=False, random_state=random_seed)

    else:
        print("Choosing low resource TF-IDF model.")

        # embedding_model = make_pipeline(
        #         TfidfVectorizer(),
        #         TruncatedSVD(100, random_state=random_seed)
        #         )
        
        # If large embeddings currently exist, wipe these empty, then rename embeddings type
        if embeddings_type_state == "large":
            embeddings_out = np.array([])

        embeddings_type_state = "tfidf"

        #umap_model = TruncatedSVD(n_components=5, random_state=random_seed)
    # UMAP model uses Bertopic defaults
    umap_model = UMAP(n_neighbors=umap_n_neighbours, n_components=5, min_dist=umap_min_dist, metric=umap_metric, low_memory=True, random_state=random_seed)

    embeddings_out, embedding_model = make_or_load_embeddings(docs, file_list, embeddings_out, embeddings_super_compress, high_quality_mode, embeddings_name)

     # If you want to save your embedding files
    if return_intermediate_files == "Yes":
        print("Saving embeddings to file")
        if high_quality_mode == "No":
            embeddings_file_name = output_folder + data_file_name_no_ext + '_' + 'tfidf_embeddings.npz'
        else:
            if embeddings_super_compress == "No":
                embeddings_file_name = output_folder + data_file_name_no_ext + '_' + 'large_embeddings.npz'
            else:
                embeddings_file_name = output_folder + data_file_name_no_ext + '_' + 'large_embeddings_compress.npz'

        print("output_folder:", output_folder)
        print("data_file_name_no_ext:", data_file_name_no_ext)
        print("embeddings_file_name:", embeddings_file_name)

        np.savez_compressed(embeddings_file_name, embeddings_out)

        output_list.append(embeddings_file_name)

        if return_only_embeddings_drop == "Yes":

            return "Embeddings output returned", output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_state, []

    # This is saved as a Gradio state object
    vectoriser_model = vectoriser_state
 
    progress(0.3, desc= "Embeddings loaded. Creating BERTopic model")

    fail_error_message = "Topic model creation failed. Try reducing minimum documents per topic on the slider above (try 15 or less), then click 'Extract topics' again. If that doesn't work, try running the first two clean steps on your data first (see Clean data above) to ensure there are no NaNs/missing texts in your data."

    if not candidate_topics:
        
        try:
            # print("vectoriser_model:", vectoriser_model)

            topic_model = BERTopic( embedding_model=embedding_model,
                                    vectorizer_model=vectoriser_model,
                                    umap_model=umap_model,
                                    min_topic_size = min_docs_slider,
                                    nr_topics = max_topics_slider,
                                    calculate_probabilities=calc_probs,
                                    verbose = True)

            assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)

            if calc_probs == True:
                
                topics_probs_out = pd.DataFrame(topic_model.probabilities_)
                topics_probs_out_name = output_folder + "topic_full_probs_" + data_file_name_no_ext + "_" + today_rev + ".csv"
                topics_probs_out.to_csv(topics_probs_out_name)
                output_list.append(topics_probs_out_name)

        except Exception as error:
            print(error)
            print(fail_error_message)

            out_fail_error_message = '\n'.join([fail_error_message, str(error)])

            return out_fail_error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, []
    

    # Do this if you have pre-defined topics
    else:
        #if high_quality_mode == "No":
        #    error_message = "Zero shot topic modelling currently not compatible with low-resource embeddings. Please change this option to 'No' on the options tab and retry."
        #    print(error_message)

        #    return error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, []

        zero_shot_topics = read_file(candidate_topics.name)
        zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())

        print("Zero shot topics are:", zero_shot_topics_lower)

 
        try:
            topic_model = BERTopic( embedding_model=embedding_model, #embedding_model_pipe, # for Jina
                                    vectorizer_model=vectoriser_model,
                                    umap_model=umap_model,
                                    min_topic_size = min_docs_slider,
                                    nr_topics = max_topics_slider,
                                    zeroshot_topic_list = zero_shot_topics_lower,
                                    zeroshot_min_similarity = zero_shot_similarity, # 0.7
                                    calculate_probabilities=calc_probs,
                                    verbose = True)
            
            assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)

            if calc_probs == True:

                assigned_topics, probs = topic_model.transform(docs, embeddings_out)
                print("Probs:", probs)
                topic_model.probabilities_ = probs
                topics_probs_out = pd.DataFrame(topic_model.probabilities_)
                topics_probs_out_name = output_folder + "topic_full_probs_" + data_file_name_no_ext + "_" + today_rev + ".csv"
                topics_probs_out.to_csv(topics_probs_out_name)
                output_list.append(topics_probs_out_name)

        except Exception as error:
            print("An exception occurred:", error)
            print(fail_error_message)

            out_fail_error_message = '\n'.join([fail_error_message, str(error)])

            return out_fail_error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, []

        # For some reason, zero topic modelling exports assigned topics as a np.array instead of a list. Converting it back here.
        if isinstance(assigned_topics, np.ndarray):
            assigned_topics = assigned_topics.tolist()

         # Zero shot modelling is a model merge, which wipes the c_tf_idf part of the resulting model completely. To get hierarchical modelling to work, we need to recreate this part of the model with the CountVectorizer options used to create the initial model. Since with zero shot, we are merging two models that have exactly the same set of documents, the vocubulary should be the same, and so recreating the cf_tf_idf component in this way shouldn't be a problem. Discussion here, and below based on Maarten's suggested code: https://github.com/MaartenGr/BERTopic/issues/1700     

        # Get document info
        doc_dets = topic_model.get_document_info(docs)

        documents_per_topic = doc_dets.groupby(['Topic'], as_index=False).agg({'Document': ' '.join})

        # Assign CountVectorizer to merged model
        topic_model.vectorizer_model = vectoriser_model

        # Re-calculate c-TF-IDF
        c_tf_idf, _ = topic_model._c_tf_idf(documents_per_topic)
        topic_model.c_tf_idf_ = c_tf_idf

    # Check we have topics
    if not assigned_topics:
        return "No topics found.", output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, topic_model, docs, vectoriser_model,[]
    else: 
        print("Topic model created.")

    # Tidy up topic label format a bit to have commas and spaces by default
    if not candidate_topics:
        print("Zero shot topics not found, so not renaming")
        new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ")
        topic_model.set_topic_labels(new_topic_labels)
    if candidate_topics:
        print("Custom labels:", topic_model.custom_labels_)
        print("Topic labels:", topic_model.topic_labels_)
        topic_model.set_topic_labels(topic_model.topic_labels_)

    # Replace current topic labels if new ones loaded in
    if not custom_labels_df.empty:
        #custom_label_list = list(custom_labels_df.iloc[:,0])
        custom_label_list = [label.replace("\n", "") for label in custom_labels_df.iloc[:,0]]

        topic_model.set_topic_labels(custom_label_list)
        
    print("Custom topics: ", topic_model.custom_labels_)

    # Outputs
    output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, data, split_sentence_drop)

    

    all_toc = time.perf_counter()
    time_out = f"All processes took {all_toc - all_tic:0.1f} seconds."
    print(time_out)

    return output_text, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, topic_model, docs, vectoriser_model, assigned_topics

def reduce_outliers(topic_model: BERTopic, docs: List[str], embeddings_out: np.ndarray, data_file_name_no_ext: str, assigned_topics: Union[np.ndarray, List[int]], vectoriser_model: CountVectorizer, save_topic_model: str, split_sentence_drop: str, data: PandasDataFrame, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> tuple:
    """

    Reduce outliers in the topic model and update the topic representation.



    Args:

        topic_model (BERTopic): The BERTopic topic model to be used.

        docs (List[str]): List of documents.

        embeddings_out (np.ndarray): Output embeddings.

        data_file_name_no_ext (str): Data file name without extension.

        assigned_topics (Union[np.ndarray, List[int]]): Assigned topics.

        vectoriser_model (CountVectorizer): Vectorizer model.

        save_topic_model (str): Whether to save the topic model.

        split_sentence_drop (str): Dropdown result indicating whether sentences have been split.

        data (PandasDataFrame): The input dataframe

        progress (gr.Progress, optional): Progress tracker. Defaults to gr.Progress(track_tqdm=True).



    Returns:

        tuple: A tuple containing the output text, output list, and the updated topic model.

    """

    progress(0, desc= "Preparing data")

    output_list = []

    all_tic = time.perf_counter()

    if isinstance(assigned_topics, np.ndarray):
        assigned_topics = assigned_topics.tolist()

    # Reduce outliers if required, then update representation
    progress(0.2, desc= "Reducing outliers")
    print("Reducing outliers.")
    # Calculate the c-TF-IDF representation for each outlier document and find the best matching c-TF-IDF topic representation using cosine similarity.
    assigned_topics = topic_model.reduce_outliers(docs, assigned_topics, strategy="embeddings")
    # Then, update the topics to the ones that considered the new data

    progress(0.6, desc= "Updating original model")

    topic_model.update_topics(docs, topics=assigned_topics, vectorizer_model = vectoriser_model)

    # Tidy up topic label format a bit to have commas and spaces by default
    new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ")
    topic_model.set_topic_labels(new_topic_labels)

    print("Finished reducing outliers.")

    # Outputs   
    progress(0.9, desc= "Saving to file")
    output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, data, split_sentence_drop)

    all_toc = time.perf_counter()
    time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
    print(time_out)
    
    return output_text, output_list, topic_model

def represent_topics(topic_model: BERTopic, docs: List[str], data_file_name_no_ext: str, high_quality_mode: str, save_topic_model: str, representation_type: str, vectoriser_model: CountVectorizer, split_sentence_drop: str, data: PandasDataFrame, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> tuple:
    """

    Represents topics using the specified representation model and updates the topic labels accordingly.



    Args:

        topic_model (BERTopic): The topic model to be used.

        docs (List[str]): List of documents to be processed.

        data_file_name_no_ext (str): The base name of the data file without extension.

        high_quality_mode (str): Whether to use high quality (transformers based) embeddings.

        save_topic_model (str): Whether to save the topic model.

        representation_type (str): The type of representation model to be used.

        vectoriser_model (CountVectorizer): The vectorizer model to be used.

        split_sentence_drop (str): Dropdown result indicating whether sentences have been split.

        data (PandasDataFrame): The input dataframe

        progress (gr.Progress, optional): Progress tracker for the process. Defaults to gr.Progress(track_tqdm=True).



    Returns:

        tuple: A tuple containing the output text, output list, and the updated topic model.

    """

    output_list = []

    all_tic = time.perf_counter()

    # Load in representation model

    progress(0.1, desc= "Loading model and creating new topic representation")

    representation_model = create_representation_model(representation_type, llm_config, hf_model_name, hf_model_file, chosen_start_tag, high_quality_mode)  

    progress(0.3, desc= "Updating existing topics")
    topic_model.update_topics(docs, vectorizer_model=vectoriser_model, representation_model=representation_model)

    topic_dets = topic_model.get_topic_info()

    # Replace original labels with LLM labels
    if representation_type == "LLM":
        llm_labels = [label[0].split("\n")[0] for label in topic_dets["LLM"]]
        topic_model.set_topic_labels(llm_labels)

        label_list_file_name = output_folder + data_file_name_no_ext + '_llm_topic_list_' + today_rev + '.csv'

        llm_labels_df = pd.DataFrame(data={"Label":llm_labels})
        llm_labels_df.to_csv(label_list_file_name, index=None)

        output_list.append(label_list_file_name)
    else:
        new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ", aspect = representation_type)

        topic_model.set_topic_labels(new_topic_labels)

    # Outputs
    progress(0.8, desc= "Saving outputs")
    output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, data, split_sentence_drop)

    all_toc = time.perf_counter()
    time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
    print(time_out)

    return output_text, output_list, topic_model

def visualise_topics(

    topic_model: BERTopic, 

    data: pd.DataFrame, 

    data_file_name_no_ext: str, 

    high_quality_mode: str,  

    embeddings_out: np.ndarray, 

    in_label: List[str], 

    in_colnames: List[str], 

    legend_label: str, 

    sample_prop: float, 

    visualisation_type_radio: str, 

    random_seed: int = random_seed, 

    umap_n_neighbours: int = umap_n_neighbours, 

    umap_min_dist: float = umap_min_dist, 

    umap_metric: str = umap_metric, 

    progress: gr.Progress = gr.Progress(track_tqdm=True)

) -> tuple:
    """

    Visualize topics using the provided topic model and data.



    Args:

        topic_model (BERTopic): The topic model to be used for visualization.

        data (pd.DataFrame): The input data containing the documents.

        data_file_name_no_ext (str): The base name of the data file without extension.

        high_quality_mode (str): Whether to use high quality mode for embeddings.

        embeddings_out (np.ndarray): The output embeddings.

        in_label (List[str]): List of labels for the input data.

        in_colnames (List[str]): List of column names in the input data.

        legend_label (str): The label to be used in the legend.

        sample_prop (float): The proportion of data to sample for visualization.

        visualisation_type_radio (str): The type of visualization to be used.

        random_seed (int, optional): Random seed for reproducibility. Defaults to random_seed.

        umap_n_neighbours (int, optional): Number of neighbors for UMAP. Defaults to umap_n_neighbours.

        umap_min_dist (float, optional): Minimum distance for UMAP. Defaults to umap_min_dist.

        umap_metric (str, optional): Metric for UMAP. Defaults to umap_metric.

        progress (gr.Progress, optional): Progress tracker for the process. Defaults to gr.Progress(track_tqdm=True).



    Returns:

        tuple: A tuple containing the output message, output list, reduced embeddings, and topic model.

    """

    progress(0, desc= "Preparing data for visualisation")

    output_list = []
    output_message = []
    vis_tic = time.perf_counter()

    
    if not visualisation_type_radio:
        return "Please choose a visualisation type above.", output_list, None, None

    # Get topic labels
    if in_label:
       in_label_list_first = in_label[0]
    else:
       return "Label column not found. Please enter this above.", output_list, None, None
    
    # Get docs
    if in_colnames:
        in_colnames_list_first = in_colnames[0]
    else:
        return "Label column not found. Please enter this on the data load tab.", output_list, None, None
    
    docs = list(data[in_colnames_list_first].str.lower())

    # Make sure format of input series is good
    data[in_label_list_first] = data[in_label_list_first].fillna('').astype(str)
    label_list = list(data[in_label_list_first])

    topic_dets = topic_model.get_topic_info()

    # Replace original labels with another representation if specified
    if legend_label:
        topic_dets = topic_model.get_topics(full=True)
        if legend_label in topic_dets:
            labels = [topic_dets[legend_label].values()]
            labels = [str(v) for v in labels]
            topic_model.set_topic_labels(labels)

    # Pre-reduce embeddings for visualisation purposes
    if high_quality_mode == "Yes":
        reduced_embeddings = UMAP(n_neighbors=umap_n_neighbours, n_components=2, min_dist=umap_min_dist, metric=umap_metric, random_state=random_seed).fit_transform(embeddings_out)
    else:
        reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out)

    progress(0.3, desc= "Creating visualisations")
    # Visualise the topics:
    
    print("Creating visualisations")

    if visualisation_type_radio == "Topic document graph":
        try:
            topics_vis = visualize_documents_custom(topic_model, docs, hover_labels = label_list, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True, sample = sample_prop, width= 1200, height = 750)

            topics_vis_name = output_folder + data_file_name_no_ext + '_' + 'vis_topic_docs_' + today_rev + '.html'
            topics_vis.write_html(topics_vis_name)
            output_list.append(topics_vis_name)
        except Exception as e:
            print(e)
            output_message = str(e)
            return output_message, output_list, None, None

        try:
            topics_vis_2 = topic_model.visualize_heatmap(custom_labels=True, width= 1200, height = 1200)

            topics_vis_2_name = output_folder + data_file_name_no_ext + '_' + 'vis_heatmap_' + today_rev + '.html'
            topics_vis_2.write_html(topics_vis_2_name)
            output_list.append(topics_vis_2_name)
        except Exception as e:
            print(e)
            output_message.append(str(e))

    elif visualisation_type_radio == "Hierarchical view":

        hierarchical_topics = hierarchical_topics_custom(topic_model, docs)

        # Print topic tree - may get encoding errors, so doing try except
        try:
            tree = topic_model.get_topic_tree(hierarchical_topics, tight_layout = True)
            tree_name = output_folder + data_file_name_no_ext + '_' + 'vis_hierarchy_tree_' + today_rev + '.txt'

            with open(tree_name, "w") as file:
                # Write the string to the file
                file.write(tree)

            output_list.append(tree_name)

        except Exception as e:
            new_out_message = "An exception occurred when making topic tree document, skipped:" + str(e)
            output_message.append(str(new_out_message))
            print(new_out_message)


        # Save new hierarchical topic model to file
        try:
            hierarchical_topics_name = output_folder + data_file_name_no_ext + '_' + 'vis_hierarchy_topics_dist_' + today_rev + '.csv'
            hierarchical_topics.to_csv(hierarchical_topics_name, index = None)
            output_list.append(hierarchical_topics_name)

            topics_vis, hierarchy_df, hierarchy_topic_names = visualize_hierarchical_documents_custom(topic_model, docs, label_list, hierarchical_topics, hide_annotations=True, reduced_embeddings=reduced_embeddings, sample = sample_prop, hide_document_hover= False, custom_labels=True, width= 1200, height = 750)
            topics_vis_2 = visualize_hierarchy_custom(topic_model, hierarchical_topics=hierarchical_topics, width= 1200, height = 750)
        except Exception as e:
            new_out_message = "An exception occurred when making hierarchical topic visualisation:" + str(e) + ". Maybe your model doesn't have enough topics to create a hierarchy?"
            output_message.append(str(new_out_message))
            print(new_out_message)
            return new_out_message, output_list, None, None

        # Write hierarchical topics levels to df
        hierarchy_df_name = output_folder + data_file_name_no_ext + '_' + 'hierarchy_topics_df_' + today_rev + '.csv'
        hierarchy_df.to_csv(hierarchy_df_name, index = None)
        output_list.append(hierarchy_df_name)

        # Write hierarchical topics names to df
        hierarchy_topic_names_name = output_folder + data_file_name_no_ext + '_' + 'hierarchy_topics_names_' + today_rev + '.csv'
        hierarchy_topic_names.to_csv(hierarchy_topic_names_name, index = None)
        output_list.append(hierarchy_topic_names_name)


        topics_vis_name = output_folder + data_file_name_no_ext + '_' + 'vis_hierarchy_topic_doc_' + today_rev + '.html'
        topics_vis.write_html(topics_vis_name)
        output_list.append(topics_vis_name)

        topics_vis_2_name = output_folder + data_file_name_no_ext + '_' + 'vis_hierarchy_' + today_rev + '.html'
        topics_vis_2.write_html(topics_vis_2_name)
        output_list.append(topics_vis_2_name)

    all_toc = time.perf_counter()
    output_message.append(f"Creating visualisation took {all_toc - vis_tic:0.1f} seconds")
    print(output_message)

    return '\n'.join(output_message), output_list, topics_vis, topics_vis_2

def save_as_pytorch_model(topic_model: BERTopic, data_file_name_no_ext:str, progress=gr.Progress(track_tqdm=True)):
    """

    Reduce outliers in the topic model and update the topic representation.



    Args:

        topic_model (BERTopic): The BERTopic topic model to be used.

        data_file_name_no_ext (str): Document file name.

    Returns:

        tuple: A tuple containing the output text and output list.

    """
    output_list = []
    output_message = ""

    if not topic_model:
        output_message = "No Pytorch model found."
        return output_message, None

    progress(0, desc= "Saving topic model in Pytorch format")

    topic_model_save_name_folder = output_folder + data_file_name_no_ext + "_topics_" + today_rev# + ".safetensors"
    topic_model_save_name_zip = topic_model_save_name_folder + ".zip"

    # Clear folder before replacing files
    delete_files_in_folder(topic_model_save_name_folder)

    topic_model.save(topic_model_save_name_folder, serialization='pytorch', save_embedding_model=True, save_ctfidf=False)

    # Zip file example    
    zip_folder(topic_model_save_name_folder, topic_model_save_name_zip)
    output_list.append(topic_model_save_name_zip)

    output_message = "Model saved in Pytorch format."

    return output_message, output_list