topic_modelling / download_model.py
seanpedrickcase's picture
Allowed for app running on AWS to use smaller embedding model and not to load representation LLM (due to size restrictions).
22ca76e
raw
history blame
558 Bytes
from huggingface_hub import hf_hub_download
# Define the repository and files to download
repo_id = "sentence-transformers/all-MiniLM-L6-v2" #"BAAI/bge-small-en-v1.5"
files_to_download = [
"config.json",
"config_sentence_transformers.json",
"model.safetensors",
"tokenizer_config.json",
"vocab.txt"
]
# Download each file and save it to the /model/bge directory
for file_name in files_to_download:
print("Checking for file", file_name)
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir="/model/embed") #"/model/bge"