topic_modelling / funcs /representation_model.py
Sonnyjim's picture
first commit
9dbf344
raw
history blame
5.22 kB
import os
#from ctransformers import AutoModelForCausalLM
#from transformers import AutoTokenizer, pipeline
from bertopic.representation import LlamaCPP
from llama_cpp import Llama
from pydantic import BaseModel
import torch.cuda
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, TextGeneration
from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
#from huggingface_hub import hf_hub_download
#hf_hub_download(repo_id='second-state/stablelm-2-zephyr-1.6b-GGUF', filename='stablelm-2-zephyr-1_6b-Q5_K_M.gguf')
hf_model_name = 'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
hf_model_file = 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
chosen_prompt = open_hermes_prompt # stablelm_prompt
chosen_start_tag = open_hermes_start # stablelm_start
# Find model file
def find_model_file(hf_model_name, hf_model_file):
hf_loc = os.environ["HF_HOME"]
hf_sub_loc = os.environ["HF_HOME"] + "/hub/"
hf_model_name_path = hf_sub_loc + 'models--' + hf_model_name.replace("/","--")
print(hf_model_name_path)
def find_file(root_folder, file_name):
for root, dirs, files in os.walk(root_folder):
if file_name in files:
return os.path.join(root, file_name)
return None
# Example usage
folder_path = hf_model_name_path # Replace with your folder path
file_to_find = hf_model_file # Replace with the file name you're looking for
found_file = find_file(folder_path, file_to_find)
if found_file:
print(f"File found: {found_file}")
return found_file
else:
error = "File not found."
print(error)
return error
found_file = find_model_file(hf_model_name, hf_model_file)
# Currently set n_gpu_layers to 0 even with cuda due to persistent bugs in implementation with cuda
if torch.cuda.is_available():
torch_device = "gpu"
low_resource_mode = "No"
n_gpu_layers = 100
else:
torch_device = "cpu"
low_resource_mode = "Yes"
n_gpu_layers = 0
#low_resource_mode = "Yes"
#print("Running on device:", torch_device)
n_threads = torch.get_num_threads()
print("CPU n_threads:", n_threads)
# Default Model parameters
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repeat_penalty: float = 1.1
last_n_tokens_size: int = 128
max_tokens: int = 500
seed: int = 42
reset: bool = True
stream: bool = False
n_threads: int = n_threads
n_batch:int = 256
n_ctx:int = 4096
sample:bool = True
trust_remote_code:bool =True
class LLamacppInitConfigGpu(BaseModel):
last_n_tokens_size: int
seed: int
n_threads: int
n_batch: int
n_ctx: int
n_gpu_layers: int
temperature: float
top_k: int
top_p: float
repeat_penalty: float
max_tokens: int
reset: bool
stream: bool
stop: str
trust_remote_code:bool
def update_gpu(self, new_value: int):
self.n_gpu_layers = new_value
gpu_config = LLamacppInitConfigGpu(last_n_tokens_size=last_n_tokens_size,
seed=seed,
n_threads=n_threads,
n_batch=n_batch,
n_ctx=n_ctx,
n_gpu_layers=n_gpu_layers,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
max_tokens=max_tokens,
reset=reset,
stream=stream,
stop=chosen_start_tag,
trust_remote_code=trust_remote_code)
cpu_config = gpu_config.model_copy()
cpu_config.update_gpu(0)
class LLamacppGenerateConfig(BaseModel):
temperature: float
top_k: int
top_p: float
repeat_penalty: float
max_tokens: int
reset: bool
stream: bool
gen_config = LLamacppGenerateConfig(
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
max_tokens=max_tokens,
reset=reset,
stream=stream)
## Create representation model parameters ##
# KeyBERT
keybert = KeyBERTInspired()
if low_resource_mode == "No":
# Use llama.cpp to load in model
llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=n_gpu_layers, n_ctx=n_ctx) #**gpu_config.model_dump())#
#print(llm.n_gpu_layers)
llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
# All representation models
representation_model = {
"KeyBERT": keybert,
"Mistral": llm_model
}
elif low_resource_mode == "Yes":
representation_model = {"KeyBERT": keybert}
# Deprecated example using CTransformers. This package is not really used anymore
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(gpu_config))
#tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
#generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
# Text generation with Llama 2
#mistral_capybara = TextGeneration(generator, prompt=capybara_prompt)
#mistral_hermes = TextGeneration(generator, prompt=open_hermes_prompt)
# MMR (is rubbish, don't use)
#mmr = MaximalMarginalRelevance(diversity=0.3)