Spaces:
Running
Running
Changed Phi model to smaller StableLM 2 1.6. Fixed a None type detection error.
Browse files- app.py +24 -16
- funcs/bertopic_hierarchical_documents.py +336 -0
- funcs/bertopic_hierarchical_documents_to_df.py +250 -0
- funcs/representation_model.py +3 -3
app.py
CHANGED
@@ -87,8 +87,8 @@ embeddings_name = "BAAI/bge-small-en-v1.5" #"jinaai/jina-embeddings-v2-base-en"
|
|
87 |
#revision_choice = "69d43700292701b06c24f43b96560566a4e5ad1f"
|
88 |
|
89 |
# Model used for representing topics
|
90 |
-
hf_model_name = 'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
|
91 |
-
hf_model_file = 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
|
92 |
|
93 |
def save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, progress=gr.Progress()):
|
94 |
topic_dets = topic_model.get_topic_info()
|
@@ -227,7 +227,15 @@ def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slid
|
|
227 |
nr_topics = max_topics_slider,
|
228 |
verbose = True)
|
229 |
|
230 |
-
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
# Do this if you have pre-defined topics
|
@@ -254,13 +262,13 @@ def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slid
|
|
254 |
|
255 |
# print(topics_text)
|
256 |
|
257 |
-
|
258 |
-
|
259 |
|
260 |
-
|
261 |
|
262 |
-
|
263 |
-
|
264 |
|
265 |
# Outputs
|
266 |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
|
@@ -319,8 +327,8 @@ def reduce_outliers(topic_model, docs, embeddings_out, data_file_name_no_ext, lo
|
|
319 |
topic_dets = topic_model.get_topic_info()
|
320 |
|
321 |
# Replace original labels with LLM labels
|
322 |
-
if "
|
323 |
-
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["
|
324 |
topic_model.set_topic_labels(llm_labels)
|
325 |
else:
|
326 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
@@ -355,14 +363,14 @@ def represent_topics(topic_model, docs, embeddings_out, data_file_name_no_ext, l
|
|
355 |
topic_model.update_topics(docs, topics=topics_text, vectorizer_model=vectoriser_model, representation_model=representation_model)
|
356 |
|
357 |
# Replace original labels with LLM labels
|
358 |
-
if "
|
359 |
-
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["
|
360 |
topic_model.set_topic_labels(llm_labels)
|
361 |
|
362 |
-
with open('llm_topic_list.
|
363 |
for item in llm_labels:
|
364 |
file.write(f"{item}\n")
|
365 |
-
output_list.append('llm_topic_list.
|
366 |
else:
|
367 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
368 |
|
@@ -386,8 +394,8 @@ def visualise_topics(topic_model, docs, data_file_name_no_ext, low_resource_mode
|
|
386 |
topic_dets = topic_model.get_topic_info()
|
387 |
|
388 |
# Replace original labels with LLM labels
|
389 |
-
if "
|
390 |
-
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["
|
391 |
topic_model.set_topic_labels(llm_labels)
|
392 |
else:
|
393 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
|
|
87 |
#revision_choice = "69d43700292701b06c24f43b96560566a4e5ad1f"
|
88 |
|
89 |
# Model used for representing topics
|
90 |
+
hf_model_name = 'second-state/stablelm-2-zephyr-1.6b-GGUF' #'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' # 'second-state/stablelm-2-zephyr-1.6b-GGUF'
|
91 |
+
hf_model_file = 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf' # 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # 'stablelm-2-zephyr-1_6b-Q5_K_M.gguf'
|
92 |
|
93 |
def save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, progress=gr.Progress()):
|
94 |
topic_dets = topic_model.get_topic_info()
|
|
|
227 |
nr_topics = max_topics_slider,
|
228 |
verbose = True)
|
229 |
|
230 |
+
topics_text, probs = topic_model.fit_transform(docs, embeddings_out)
|
231 |
+
|
232 |
+
if not topics_text:
|
233 |
+
# Handle the empty array case
|
234 |
+
|
235 |
+
return "No topics found.", data_file_name, None, embeddings_out, data_file_name_no_ext, topic_model, docs, label_list
|
236 |
+
|
237 |
+
else:
|
238 |
+
print("Topic model created.")
|
239 |
|
240 |
|
241 |
# Do this if you have pre-defined topics
|
|
|
262 |
|
263 |
# print(topics_text)
|
264 |
|
265 |
+
if topics_text.size == 0:
|
266 |
+
# Handle the empty array case
|
267 |
|
268 |
+
return "No topics found.", data_file_name, None, embeddings_out, data_file_name_no_ext, topic_model, docs, label_list
|
269 |
|
270 |
+
else:
|
271 |
+
print("Topic model created.")
|
272 |
|
273 |
# Outputs
|
274 |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
|
|
|
327 |
topic_dets = topic_model.get_topic_info()
|
328 |
|
329 |
# Replace original labels with LLM labels
|
330 |
+
if "LLM" in topic_model.get_topic_info().columns:
|
331 |
+
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
|
332 |
topic_model.set_topic_labels(llm_labels)
|
333 |
else:
|
334 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
|
|
363 |
topic_model.update_topics(docs, topics=topics_text, vectorizer_model=vectoriser_model, representation_model=representation_model)
|
364 |
|
365 |
# Replace original labels with LLM labels
|
366 |
+
if "LLM" in topic_model.get_topic_info().columns:
|
367 |
+
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
|
368 |
topic_model.set_topic_labels(llm_labels)
|
369 |
|
370 |
+
with open('llm_topic_list.csv', 'w') as file:
|
371 |
for item in llm_labels:
|
372 |
file.write(f"{item}\n")
|
373 |
+
output_list.append('llm_topic_list.csv')
|
374 |
else:
|
375 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
376 |
|
|
|
394 |
topic_dets = topic_model.get_topic_info()
|
395 |
|
396 |
# Replace original labels with LLM labels
|
397 |
+
if "LLM" in topic_model.get_topic_info().columns:
|
398 |
+
llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
|
399 |
topic_model.set_topic_labels(llm_labels)
|
400 |
else:
|
401 |
topic_model.set_topic_labels(list(topic_dets["Name"]))
|
funcs/bertopic_hierarchical_documents.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import math
|
5 |
+
|
6 |
+
from umap import UMAP
|
7 |
+
from typing import List, Union
|
8 |
+
|
9 |
+
|
10 |
+
def visualize_hierarchical_documents(topic_model,
|
11 |
+
docs: List[str],
|
12 |
+
hierarchical_topics: pd.DataFrame,
|
13 |
+
topics: List[int] = None,
|
14 |
+
embeddings: np.ndarray = None,
|
15 |
+
reduced_embeddings: np.ndarray = None,
|
16 |
+
sample: Union[float, int] = None,
|
17 |
+
hide_annotations: bool = False,
|
18 |
+
hide_document_hover: bool = True,
|
19 |
+
nr_levels: int = 10,
|
20 |
+
level_scale: str = 'linear',
|
21 |
+
custom_labels: Union[bool, str] = False,
|
22 |
+
title: str = "<b>Hierarchical Documents and Topics</b>",
|
23 |
+
width: int = 1200,
|
24 |
+
height: int = 750) -> go.Figure:
|
25 |
+
""" Visualize documents and their topics in 2D at different levels of hierarchy
|
26 |
+
|
27 |
+
Arguments:
|
28 |
+
docs: The documents you used when calling either `fit` or `fit_transform`
|
29 |
+
hierarchical_topics: A dataframe that contains a hierarchy of topics
|
30 |
+
represented by their parents and their children
|
31 |
+
topics: A selection of topics to visualize.
|
32 |
+
Not to be confused with the topics that you get from `.fit_transform`.
|
33 |
+
For example, if you want to visualize only topics 1 through 5:
|
34 |
+
`topics = [1, 2, 3, 4, 5]`.
|
35 |
+
embeddings: The embeddings of all documents in `docs`.
|
36 |
+
reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
|
37 |
+
sample: The percentage of documents in each topic that you would like to keep.
|
38 |
+
Value can be between 0 and 1. Setting this value to, for example,
|
39 |
+
0.1 (10% of documents in each topic) makes it easier to visualize
|
40 |
+
millions of documents as a subset is chosen.
|
41 |
+
hide_annotations: Hide the names of the traces on top of each cluster.
|
42 |
+
hide_document_hover: Hide the content of the documents when hovering over
|
43 |
+
specific points. Helps to speed up generation of visualizations.
|
44 |
+
nr_levels: The number of levels to be visualized in the hierarchy. First, the distances
|
45 |
+
in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances.
|
46 |
+
Then, for each list of distances, the merged topics are selected that have a
|
47 |
+
distance less or equal to the maximum distance of the selected list of distances.
|
48 |
+
NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to
|
49 |
+
the length of `hierarchical_topics`.
|
50 |
+
level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance
|
51 |
+
vector. Linear scaling will perform an equal number of merges at each level
|
52 |
+
while logarithmic scaling will perform more mergers in earlier levels to
|
53 |
+
provide more resolution at higher levels (this can be used for when the number
|
54 |
+
of topics is large).
|
55 |
+
custom_labels: If bool, whether to use custom topic labels that were defined using
|
56 |
+
`topic_model.set_topic_labels`.
|
57 |
+
If `str`, it uses labels from other aspects, e.g., "Aspect1".
|
58 |
+
NOTE: Custom labels are only generated for the original
|
59 |
+
un-merged topics.
|
60 |
+
title: Title of the plot.
|
61 |
+
width: The width of the figure.
|
62 |
+
height: The height of the figure.
|
63 |
+
|
64 |
+
Examples:
|
65 |
+
|
66 |
+
To visualize the topics simply run:
|
67 |
+
|
68 |
+
```python
|
69 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
|
70 |
+
```
|
71 |
+
|
72 |
+
Do note that this re-calculates the embeddings and reduces them to 2D.
|
73 |
+
The advised and prefered pipeline for using this function is as follows:
|
74 |
+
|
75 |
+
```python
|
76 |
+
from sklearn.datasets import fetch_20newsgroups
|
77 |
+
from sentence_transformers import SentenceTransformer
|
78 |
+
from bertopic import BERTopic
|
79 |
+
from umap import UMAP
|
80 |
+
|
81 |
+
# Prepare embeddings
|
82 |
+
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
|
83 |
+
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
84 |
+
embeddings = sentence_model.encode(docs, show_progress_bar=False)
|
85 |
+
|
86 |
+
# Train BERTopic and extract hierarchical topics
|
87 |
+
topic_model = BERTopic().fit(docs, embeddings)
|
88 |
+
hierarchical_topics = topic_model.hierarchical_topics(docs)
|
89 |
+
|
90 |
+
# Reduce dimensionality of embeddings, this step is optional
|
91 |
+
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)
|
92 |
+
|
93 |
+
# Run the visualization with the original embeddings
|
94 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)
|
95 |
+
|
96 |
+
# Or, if you have reduced the original embeddings already:
|
97 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
98 |
+
```
|
99 |
+
|
100 |
+
Or if you want to save the resulting figure:
|
101 |
+
|
102 |
+
```python
|
103 |
+
fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
104 |
+
fig.write_html("path/to/file.html")
|
105 |
+
```
|
106 |
+
|
107 |
+
NOTE:
|
108 |
+
This visualization was inspired by the scatter plot representation of Doc2Map:
|
109 |
+
https://github.com/louisgeisler/Doc2Map
|
110 |
+
|
111 |
+
<iframe src="../../getting_started/visualization/hierarchical_documents.html"
|
112 |
+
style="width:1000px; height: 770px; border: 0px;""></iframe>
|
113 |
+
"""
|
114 |
+
topic_per_doc = topic_model.topics_
|
115 |
+
|
116 |
+
# Sample the data to optimize for visualization and dimensionality reduction
|
117 |
+
if sample is None or sample > 1:
|
118 |
+
sample = 1
|
119 |
+
|
120 |
+
indices = []
|
121 |
+
for topic in set(topic_per_doc):
|
122 |
+
s = np.where(np.array(topic_per_doc) == topic)[0]
|
123 |
+
size = len(s) if len(s) < 100 else int(len(s)*sample)
|
124 |
+
indices.extend(np.random.choice(s, size=size, replace=False))
|
125 |
+
indices = np.array(indices)
|
126 |
+
|
127 |
+
df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
|
128 |
+
df["doc"] = [docs[index] for index in indices]
|
129 |
+
df["topic"] = [topic_per_doc[index] for index in indices]
|
130 |
+
|
131 |
+
# Extract embeddings if not already done
|
132 |
+
if sample is None:
|
133 |
+
if embeddings is None and reduced_embeddings is None:
|
134 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
135 |
+
else:
|
136 |
+
embeddings_to_reduce = embeddings
|
137 |
+
else:
|
138 |
+
if embeddings is not None:
|
139 |
+
embeddings_to_reduce = embeddings[indices]
|
140 |
+
elif embeddings is None and reduced_embeddings is None:
|
141 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
142 |
+
|
143 |
+
# Reduce input embeddings
|
144 |
+
if reduced_embeddings is None:
|
145 |
+
umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
|
146 |
+
embeddings_2d = umap_model.embedding_
|
147 |
+
elif sample is not None and reduced_embeddings is not None:
|
148 |
+
embeddings_2d = reduced_embeddings[indices]
|
149 |
+
elif sample is None and reduced_embeddings is not None:
|
150 |
+
embeddings_2d = reduced_embeddings
|
151 |
+
|
152 |
+
# Combine data
|
153 |
+
df["x"] = embeddings_2d[:, 0]
|
154 |
+
df["y"] = embeddings_2d[:, 1]
|
155 |
+
|
156 |
+
# Create topic list for each level, levels are created by calculating the distance
|
157 |
+
distances = hierarchical_topics.Distance.to_list()
|
158 |
+
if level_scale == 'log' or level_scale == 'logarithmic':
|
159 |
+
log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist()
|
160 |
+
log_indices.reverse()
|
161 |
+
max_distances = [distances[i] for i in log_indices]
|
162 |
+
elif level_scale == 'lin' or level_scale == 'linear':
|
163 |
+
max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1]
|
164 |
+
else:
|
165 |
+
raise ValueError("level_scale needs to be one of 'log' or 'linear'")
|
166 |
+
|
167 |
+
for index, max_distance in enumerate(max_distances):
|
168 |
+
|
169 |
+
# Get topics below `max_distance`
|
170 |
+
mapping = {topic: topic for topic in df.topic.unique()}
|
171 |
+
selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :]
|
172 |
+
selection.Parent_ID = selection.Parent_ID.astype(int)
|
173 |
+
selection = selection.sort_values("Parent_ID")
|
174 |
+
|
175 |
+
for row in selection.iterrows():
|
176 |
+
for topic in row[1].Topics:
|
177 |
+
mapping[topic] = row[1].Parent_ID
|
178 |
+
|
179 |
+
# Make sure the mappings are mapped 1:1
|
180 |
+
mappings = [True for _ in mapping]
|
181 |
+
while any(mappings):
|
182 |
+
for i, (key, value) in enumerate(mapping.items()):
|
183 |
+
if value in mapping.keys() and key != value:
|
184 |
+
mapping[key] = mapping[value]
|
185 |
+
else:
|
186 |
+
mappings[i] = False
|
187 |
+
|
188 |
+
# Create new column
|
189 |
+
df[f"level_{index+1}"] = df.topic.map(mapping)
|
190 |
+
df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int)
|
191 |
+
|
192 |
+
# Prepare topic names of original and merged topics
|
193 |
+
trace_names = []
|
194 |
+
topic_names = {}
|
195 |
+
for topic in range(hierarchical_topics.Parent_ID.astype(int).max()):
|
196 |
+
if topic < hierarchical_topics.Parent_ID.astype(int).min():
|
197 |
+
if topic_model.get_topic(topic):
|
198 |
+
if isinstance(custom_labels, str):
|
199 |
+
trace_name = f"{topic}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:3])
|
200 |
+
elif topic_model.custom_labels_ is not None and custom_labels:
|
201 |
+
trace_name = topic_model.custom_labels_[topic + topic_model._outliers]
|
202 |
+
else:
|
203 |
+
trace_name = f"{topic}_" + "_".join([word[:20] for word, _ in topic_model.get_topic(topic)][:3])
|
204 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": trace_name[:40]}
|
205 |
+
trace_names.append(trace_name)
|
206 |
+
else:
|
207 |
+
trace_name = f"{topic}_" + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0]
|
208 |
+
plot_text = "_".join([name[:20] for name in trace_name.split("_")[:3]])
|
209 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": plot_text[:40]}
|
210 |
+
trace_names.append(trace_name)
|
211 |
+
|
212 |
+
# Prepare traces
|
213 |
+
all_traces = []
|
214 |
+
for level in range(len(max_distances)):
|
215 |
+
traces = []
|
216 |
+
|
217 |
+
# Outliers
|
218 |
+
if topic_model._outliers:
|
219 |
+
traces.append(
|
220 |
+
go.Scattergl(
|
221 |
+
x=df.loc[(df[f"level_{level+1}"] == -1), "x"],
|
222 |
+
y=df.loc[df[f"level_{level+1}"] == -1, "y"],
|
223 |
+
mode='markers+text',
|
224 |
+
name="other",
|
225 |
+
hoverinfo="text",
|
226 |
+
hovertext=df.loc[(df[f"level_{level+1}"] == -1), "doc"] if not hide_document_hover else None,
|
227 |
+
showlegend=False,
|
228 |
+
marker=dict(color='#CFD8DC', size=5, opacity=0.5)
|
229 |
+
)
|
230 |
+
)
|
231 |
+
|
232 |
+
# Selected topics
|
233 |
+
if topics:
|
234 |
+
selection = df.loc[(df.topic.isin(topics)), :]
|
235 |
+
unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()])
|
236 |
+
else:
|
237 |
+
unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()])
|
238 |
+
|
239 |
+
for topic in unique_topics:
|
240 |
+
if topic != -1:
|
241 |
+
if topics:
|
242 |
+
selection = df.loc[(df[f"level_{level+1}"] == topic) &
|
243 |
+
(df.topic.isin(topics)), :]
|
244 |
+
else:
|
245 |
+
selection = df.loc[df[f"level_{level+1}"] == topic, :]
|
246 |
+
|
247 |
+
if not hide_annotations:
|
248 |
+
selection.loc[len(selection), :] = None
|
249 |
+
selection["text"] = ""
|
250 |
+
selection.loc[len(selection) - 1, "x"] = selection.x.mean()
|
251 |
+
selection.loc[len(selection) - 1, "y"] = selection.y.mean()
|
252 |
+
selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"]
|
253 |
+
|
254 |
+
traces.append(
|
255 |
+
go.Scattergl(
|
256 |
+
x=selection.x,
|
257 |
+
y=selection.y,
|
258 |
+
text=selection.text if not hide_annotations else None,
|
259 |
+
hovertext=selection.doc if not hide_document_hover else None,
|
260 |
+
hoverinfo="text",
|
261 |
+
name=topic_names[int(topic)]["trace_name"],
|
262 |
+
mode='markers+text',
|
263 |
+
marker=dict(size=5, opacity=0.5)
|
264 |
+
)
|
265 |
+
)
|
266 |
+
|
267 |
+
all_traces.append(traces)
|
268 |
+
|
269 |
+
# Track and count traces
|
270 |
+
nr_traces_per_set = [len(traces) for traces in all_traces]
|
271 |
+
trace_indices = [(0, nr_traces_per_set[0])]
|
272 |
+
for index, nr_traces in enumerate(nr_traces_per_set[1:]):
|
273 |
+
start = trace_indices[index][1]
|
274 |
+
end = nr_traces + start
|
275 |
+
trace_indices.append((start, end))
|
276 |
+
|
277 |
+
# Visualization
|
278 |
+
fig = go.Figure()
|
279 |
+
for traces in all_traces:
|
280 |
+
for trace in traces:
|
281 |
+
fig.add_trace(trace)
|
282 |
+
|
283 |
+
for index in range(len(fig.data)):
|
284 |
+
if index >= nr_traces_per_set[0]:
|
285 |
+
fig.data[index].visible = False
|
286 |
+
|
287 |
+
# Create and add slider
|
288 |
+
steps = []
|
289 |
+
for index, indices in enumerate(trace_indices):
|
290 |
+
step = dict(
|
291 |
+
method="update",
|
292 |
+
label=str(index),
|
293 |
+
args=[{"visible": [False] * len(fig.data)}]
|
294 |
+
)
|
295 |
+
for index in range(indices[1]-indices[0]):
|
296 |
+
step["args"][0]["visible"][index+indices[0]] = True
|
297 |
+
steps.append(step)
|
298 |
+
|
299 |
+
sliders = [dict(
|
300 |
+
currentvalue={"prefix": "Level: "},
|
301 |
+
pad={"t": 20},
|
302 |
+
steps=steps
|
303 |
+
)]
|
304 |
+
|
305 |
+
# Add grid in a 'plus' shape
|
306 |
+
x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15))
|
307 |
+
y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15))
|
308 |
+
fig.add_shape(type="line",
|
309 |
+
x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1],
|
310 |
+
line=dict(color="#CFD8DC", width=2))
|
311 |
+
fig.add_shape(type="line",
|
312 |
+
x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2,
|
313 |
+
line=dict(color="#9E9E9E", width=2))
|
314 |
+
fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10)
|
315 |
+
fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10)
|
316 |
+
|
317 |
+
# Stylize layout
|
318 |
+
fig.update_layout(
|
319 |
+
sliders=sliders,
|
320 |
+
template="simple_white",
|
321 |
+
title={
|
322 |
+
'text': f"{title}",
|
323 |
+
'x': 0.5,
|
324 |
+
'xanchor': 'center',
|
325 |
+
'yanchor': 'top',
|
326 |
+
'font': dict(
|
327 |
+
size=22,
|
328 |
+
color="Black")
|
329 |
+
},
|
330 |
+
width=width,
|
331 |
+
height=height,
|
332 |
+
)
|
333 |
+
|
334 |
+
fig.update_xaxes(visible=False)
|
335 |
+
fig.update_yaxes(visible=False)
|
336 |
+
return fig
|
funcs/bertopic_hierarchical_documents_to_df.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import math
|
5 |
+
|
6 |
+
from umap import UMAP
|
7 |
+
from typing import List, Union
|
8 |
+
|
9 |
+
|
10 |
+
def visualize_hierarchical_documents_to_df(topic_model,
|
11 |
+
docs: List[str],
|
12 |
+
hierarchical_topics: pd.DataFrame,
|
13 |
+
topics: List[int] = None,
|
14 |
+
embeddings: np.ndarray = None,
|
15 |
+
reduced_embeddings: np.ndarray = None,
|
16 |
+
sample: Union[float, int] = None,
|
17 |
+
hide_annotations: bool = False,
|
18 |
+
hide_document_hover: bool = True,
|
19 |
+
nr_levels: int = 10,
|
20 |
+
level_scale: str = 'linear',
|
21 |
+
custom_labels: Union[bool, str] = False,
|
22 |
+
title: str = "<b>Hierarchical Documents and Topics</b>",
|
23 |
+
width: int = 1200,
|
24 |
+
height: int = 750) -> go.Figure:
|
25 |
+
""" Visualize documents and their topics in 2D at different levels of hierarchy
|
26 |
+
|
27 |
+
Arguments:
|
28 |
+
docs: The documents you used when calling either `fit` or `fit_transform`
|
29 |
+
hierarchical_topics: A dataframe that contains a hierarchy of topics
|
30 |
+
represented by their parents and their children
|
31 |
+
topics: A selection of topics to visualize.
|
32 |
+
Not to be confused with the topics that you get from `.fit_transform`.
|
33 |
+
For example, if you want to visualize only topics 1 through 5:
|
34 |
+
`topics = [1, 2, 3, 4, 5]`.
|
35 |
+
embeddings: The embeddings of all documents in `docs`.
|
36 |
+
reduced_embeddings: The 2D reduced embeddings of all documents in `docs`.
|
37 |
+
sample: The percentage of documents in each topic that you would like to keep.
|
38 |
+
Value can be between 0 and 1. Setting this value to, for example,
|
39 |
+
0.1 (10% of documents in each topic) makes it easier to visualize
|
40 |
+
millions of documents as a subset is chosen.
|
41 |
+
hide_annotations: Hide the names of the traces on top of each cluster.
|
42 |
+
hide_document_hover: Hide the content of the documents when hovering over
|
43 |
+
specific points. Helps to speed up generation of visualizations.
|
44 |
+
nr_levels: The number of levels to be visualized in the hierarchy. First, the distances
|
45 |
+
in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances.
|
46 |
+
Then, for each list of distances, the merged topics are selected that have a
|
47 |
+
distance less or equal to the maximum distance of the selected list of distances.
|
48 |
+
NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to
|
49 |
+
the length of `hierarchical_topics`.
|
50 |
+
level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance
|
51 |
+
vector. Linear scaling will perform an equal number of merges at each level
|
52 |
+
while logarithmic scaling will perform more mergers in earlier levels to
|
53 |
+
provide more resolution at higher levels (this can be used for when the number
|
54 |
+
of topics is large).
|
55 |
+
custom_labels: If bool, whether to use custom topic labels that were defined using
|
56 |
+
`topic_model.set_topic_labels`.
|
57 |
+
If `str`, it uses labels from other aspects, e.g., "Aspect1".
|
58 |
+
NOTE: Custom labels are only generated for the original
|
59 |
+
un-merged topics.
|
60 |
+
title: Title of the plot.
|
61 |
+
width: The width of the figure.
|
62 |
+
height: The height of the figure.
|
63 |
+
|
64 |
+
Examples:
|
65 |
+
|
66 |
+
To visualize the topics simply run:
|
67 |
+
|
68 |
+
```python
|
69 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
|
70 |
+
```
|
71 |
+
|
72 |
+
Do note that this re-calculates the embeddings and reduces them to 2D.
|
73 |
+
The advised and prefered pipeline for using this function is as follows:
|
74 |
+
|
75 |
+
```python
|
76 |
+
from sklearn.datasets import fetch_20newsgroups
|
77 |
+
from sentence_transformers import SentenceTransformer
|
78 |
+
from bertopic import BERTopic
|
79 |
+
from umap import UMAP
|
80 |
+
|
81 |
+
# Prepare embeddings
|
82 |
+
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
|
83 |
+
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
84 |
+
embeddings = sentence_model.encode(docs, show_progress_bar=False)
|
85 |
+
|
86 |
+
# Train BERTopic and extract hierarchical topics
|
87 |
+
topic_model = BERTopic().fit(docs, embeddings)
|
88 |
+
hierarchical_topics = topic_model.hierarchical_topics(docs)
|
89 |
+
|
90 |
+
# Reduce dimensionality of embeddings, this step is optional
|
91 |
+
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)
|
92 |
+
|
93 |
+
# Run the visualization with the original embeddings
|
94 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)
|
95 |
+
|
96 |
+
# Or, if you have reduced the original embeddings already:
|
97 |
+
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
98 |
+
```
|
99 |
+
|
100 |
+
Or if you want to save the resulting figure:
|
101 |
+
|
102 |
+
```python
|
103 |
+
fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
|
104 |
+
fig.write_html("path/to/file.html")
|
105 |
+
```
|
106 |
+
|
107 |
+
NOTE:
|
108 |
+
This visualization was inspired by the scatter plot representation of Doc2Map:
|
109 |
+
https://github.com/louisgeisler/Doc2Map
|
110 |
+
|
111 |
+
<iframe src="../../getting_started/visualization/hierarchical_documents.html"
|
112 |
+
style="width:1000px; height: 770px; border: 0px;""></iframe>
|
113 |
+
"""
|
114 |
+
topic_per_doc = topic_model.topics_
|
115 |
+
|
116 |
+
# Sample the data to optimize for visualization and dimensionality reduction
|
117 |
+
if sample is None or sample > 1:
|
118 |
+
sample = 1
|
119 |
+
|
120 |
+
indices = []
|
121 |
+
for topic in set(topic_per_doc):
|
122 |
+
s = np.where(np.array(topic_per_doc) == topic)[0]
|
123 |
+
size = len(s) if len(s) < 100 else int(len(s)*sample)
|
124 |
+
indices.extend(np.random.choice(s, size=size, replace=False))
|
125 |
+
indices = np.array(indices)
|
126 |
+
|
127 |
+
df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]})
|
128 |
+
df["doc"] = [docs[index] for index in indices]
|
129 |
+
df["topic"] = [topic_per_doc[index] for index in indices]
|
130 |
+
|
131 |
+
# Extract embeddings if not already done
|
132 |
+
if sample is None:
|
133 |
+
if embeddings is None and reduced_embeddings is None:
|
134 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
135 |
+
else:
|
136 |
+
embeddings_to_reduce = embeddings
|
137 |
+
else:
|
138 |
+
if embeddings is not None:
|
139 |
+
embeddings_to_reduce = embeddings[indices]
|
140 |
+
elif embeddings is None and reduced_embeddings is None:
|
141 |
+
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document")
|
142 |
+
|
143 |
+
# Reduce input embeddings
|
144 |
+
if reduced_embeddings is None:
|
145 |
+
umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce)
|
146 |
+
embeddings_2d = umap_model.embedding_
|
147 |
+
elif sample is not None and reduced_embeddings is not None:
|
148 |
+
embeddings_2d = reduced_embeddings[indices]
|
149 |
+
elif sample is None and reduced_embeddings is not None:
|
150 |
+
embeddings_2d = reduced_embeddings
|
151 |
+
|
152 |
+
# Combine data
|
153 |
+
df["x"] = embeddings_2d[:, 0]
|
154 |
+
df["y"] = embeddings_2d[:, 1]
|
155 |
+
|
156 |
+
# Create topic list for each level, levels are created by calculating the distance
|
157 |
+
distances = hierarchical_topics.Distance.to_list()
|
158 |
+
if level_scale == 'log' or level_scale == 'logarithmic':
|
159 |
+
log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist()
|
160 |
+
log_indices.reverse()
|
161 |
+
max_distances = [distances[i] for i in log_indices]
|
162 |
+
elif level_scale == 'lin' or level_scale == 'linear':
|
163 |
+
max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1]
|
164 |
+
else:
|
165 |
+
raise ValueError("level_scale needs to be one of 'log' or 'linear'")
|
166 |
+
|
167 |
+
for index, max_distance in enumerate(max_distances):
|
168 |
+
|
169 |
+
# Get topics below `max_distance`
|
170 |
+
mapping = {topic: topic for topic in df.topic.unique()}
|
171 |
+
selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :]
|
172 |
+
selection.Parent_ID = selection.Parent_ID.astype(int)
|
173 |
+
selection = selection.sort_values("Parent_ID")
|
174 |
+
|
175 |
+
for row in selection.iterrows():
|
176 |
+
for topic in row[1].Topics:
|
177 |
+
mapping[topic] = row[1].Parent_ID
|
178 |
+
|
179 |
+
# Make sure the mappings are mapped 1:1
|
180 |
+
mappings = [True for _ in mapping]
|
181 |
+
while any(mappings):
|
182 |
+
for i, (key, value) in enumerate(mapping.items()):
|
183 |
+
if value in mapping.keys() and key != value:
|
184 |
+
mapping[key] = mapping[value]
|
185 |
+
else:
|
186 |
+
mappings[i] = False
|
187 |
+
|
188 |
+
# Create new column
|
189 |
+
df[f"level_{index+1}"] = df.topic.map(mapping)
|
190 |
+
df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int)
|
191 |
+
|
192 |
+
# Prepare topic names of original and merged topics
|
193 |
+
trace_names = []
|
194 |
+
topic_names = {}
|
195 |
+
for topic in range(hierarchical_topics.Parent_ID.astype(int).max()):
|
196 |
+
if topic < hierarchical_topics.Parent_ID.astype(int).min():
|
197 |
+
if topic_model.get_topic(topic):
|
198 |
+
if isinstance(custom_labels, str):
|
199 |
+
trace_name = f"{topic}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:3])
|
200 |
+
elif topic_model.custom_labels_ is not None and custom_labels:
|
201 |
+
trace_name = topic_model.custom_labels_[topic + topic_model._outliers]
|
202 |
+
else:
|
203 |
+
trace_name = f"{topic}_" + "_".join([word[:20] for word, _ in topic_model.get_topic(topic)][:3])
|
204 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": trace_name[:40]}
|
205 |
+
trace_names.append(trace_name)
|
206 |
+
else:
|
207 |
+
trace_name = f"{topic}_" + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0]
|
208 |
+
plot_text = "_".join([name[:20] for name in trace_name.split("_")[:3]])
|
209 |
+
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": plot_text[:40]}
|
210 |
+
trace_names.append(trace_name)
|
211 |
+
|
212 |
+
# Prepare traces
|
213 |
+
all_traces = []
|
214 |
+
for level in range(len(max_distances)):
|
215 |
+
traces = []
|
216 |
+
|
217 |
+
# Selected topics
|
218 |
+
if topics:
|
219 |
+
selection = df.loc[(df.topic.isin(topics)), :]
|
220 |
+
unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()])
|
221 |
+
else:
|
222 |
+
unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()])
|
223 |
+
|
224 |
+
for topic in unique_topics:
|
225 |
+
if topic != -1:
|
226 |
+
if topics:
|
227 |
+
selection = df.loc[(df[f"level_{level+1}"] == topic) &
|
228 |
+
(df.topic.isin(topics)), :]
|
229 |
+
else:
|
230 |
+
selection = df.loc[df[f"level_{level+1}"] == topic, :]
|
231 |
+
|
232 |
+
if not hide_annotations:
|
233 |
+
selection.loc[len(selection), :] = None
|
234 |
+
selection["text"] = ""
|
235 |
+
selection.loc[len(selection) - 1, "x"] = selection.x.mean()
|
236 |
+
selection.loc[len(selection) - 1, "y"] = selection.y.mean()
|
237 |
+
selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"]
|
238 |
+
|
239 |
+
all_traces.append(traces)
|
240 |
+
|
241 |
+
# Track and count traces
|
242 |
+
nr_traces_per_set = [len(traces) for traces in all_traces]
|
243 |
+
trace_indices = [(0, nr_traces_per_set[0])]
|
244 |
+
for index, nr_traces in enumerate(nr_traces_per_set[1:]):
|
245 |
+
start = trace_indices[index][1]
|
246 |
+
end = nr_traces + start
|
247 |
+
trace_indices.append((start, end))
|
248 |
+
|
249 |
+
|
250 |
+
return all_traces, selection, df
|
funcs/representation_model.py
CHANGED
@@ -129,7 +129,7 @@ def find_model_file(hf_model_name, hf_model_file, search_folder):
|
|
129 |
|
130 |
print("Downloading model to: ", hf_home_value)
|
131 |
|
132 |
-
hf_hub_download(repo_id=hf_model_name, filename=
|
133 |
|
134 |
found_file = find_file(hf_home_value, file_to_find)
|
135 |
return found_file
|
@@ -141,7 +141,7 @@ def create_representation_model(create_llm_topic_labels, llm_config, hf_model_na
|
|
141 |
# Use llama.cpp to load in model
|
142 |
|
143 |
# This was for testing on systems without a HF_HOME env variable
|
144 |
-
os.unsetenv("HF_HOME")
|
145 |
|
146 |
#if "HF_HOME" in os.environ:
|
147 |
# del os.environ["HF_HOME"]
|
@@ -168,7 +168,7 @@ def create_representation_model(create_llm_topic_labels, llm_config, hf_model_na
|
|
168 |
# All representation models
|
169 |
representation_model = {
|
170 |
"KeyBERT": keybert,
|
171 |
-
"
|
172 |
}
|
173 |
|
174 |
elif create_llm_topic_labels == "No":
|
|
|
129 |
|
130 |
print("Downloading model to: ", hf_home_value)
|
131 |
|
132 |
+
hf_hub_download(repo_id=hf_model_name, filename=hf_model_file, cache_dir=hf_home_value)
|
133 |
|
134 |
found_file = find_file(hf_home_value, file_to_find)
|
135 |
return found_file
|
|
|
141 |
# Use llama.cpp to load in model
|
142 |
|
143 |
# This was for testing on systems without a HF_HOME env variable
|
144 |
+
#os.unsetenv("HF_HOME")
|
145 |
|
146 |
#if "HF_HOME" in os.environ:
|
147 |
# del os.environ["HF_HOME"]
|
|
|
168 |
# All representation models
|
169 |
representation_model = {
|
170 |
"KeyBERT": keybert,
|
171 |
+
"LLM": llm_model
|
172 |
}
|
173 |
|
174 |
elif create_llm_topic_labels == "No":
|