Spaces:
Running
Running
Sean-Case
commited on
Commit
·
aa3df37
1
Parent(s):
0b7839c
Greatly improved low resource mode speed (at cost of potential quality)
Browse files- app.py +30 -21
- funcs/embeddings.py +7 -3
- funcs/representation_model.py +6 -3
app.py
CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
|
|
2 |
from datetime import datetime
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
-
|
|
|
6 |
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
from transformers.pipelines import pipeline
|
@@ -81,6 +82,8 @@ hf_model_file = 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' # '
|
|
81 |
|
82 |
def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels, save_topic_model, visualise_topics):
|
83 |
|
|
|
|
|
84 |
output_list = []
|
85 |
file_list = [string.name for string in in_file]
|
86 |
|
@@ -122,18 +125,22 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
122 |
|
123 |
embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
|
124 |
|
|
|
|
|
125 |
elif low_resource_mode == "Yes":
|
126 |
-
print("Choosing low resource
|
127 |
embedding_model_pipe = make_pipeline(
|
128 |
TfidfVectorizer(),
|
129 |
TruncatedSVD(100) # 100 # To be compatible with zero shot, this needs to be lower than number of suggested topics
|
130 |
)
|
131 |
embedding_model = embedding_model_pipe
|
132 |
|
133 |
-
|
134 |
|
135 |
|
136 |
-
|
|
|
|
|
137 |
|
138 |
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
|
139 |
|
@@ -141,19 +148,14 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
141 |
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
|
142 |
|
143 |
print("Create LLM topic labels:", create_llm_topic_labels)
|
144 |
-
representation_model = create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag)
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
|
150 |
|
151 |
if not candidate_topics:
|
152 |
-
|
153 |
-
|
154 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
155 |
vectorizer_model=vectoriser_model,
|
156 |
-
|
157 |
min_topic_size= min_docs_slider,
|
158 |
nr_topics = max_topics_slider,
|
159 |
representation_model=representation_model,
|
@@ -173,15 +175,9 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
173 |
zero_shot_topics = read_file(candidate_topics.name)
|
174 |
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
|
175 |
|
176 |
-
if len(zero_shot_topics_lower) < 15:
|
177 |
-
umap_neighbours = len(zero_shot_topics_lower)
|
178 |
-
else: umap_neighbours = 15
|
179 |
-
|
180 |
-
#umap_model = UMAP(n_neighbors=umap_neighbours, n_components=5, random_state=random_seed)
|
181 |
-
|
182 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
183 |
vectorizer_model=vectoriser_model,
|
184 |
-
|
185 |
min_topic_size = min_docs_slider,
|
186 |
nr_topics = max_topics_slider,
|
187 |
zeroshot_topic_list = zero_shot_topics_lower,
|
@@ -252,11 +248,24 @@ def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_s
|
|
252 |
|
253 |
if visualise_topics == "Yes":
|
254 |
# Visualise the topics:
|
|
|
255 |
print("Creating visualisation")
|
256 |
topics_vis = topic_model.visualize_documents(label_col, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True)
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
return output_text, output_list, topics_vis
|
259 |
|
|
|
|
|
|
|
|
|
260 |
return output_text, output_list, None
|
261 |
|
262 |
# , topic_model_save_name
|
@@ -286,7 +295,7 @@ with block:
|
|
286 |
candidate_topics = gr.File(label="Input topics from file (csv). File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file. Currently not compatible with low-resource embeddings.")
|
287 |
|
288 |
with gr.Row():
|
289 |
-
min_docs_slider = gr.Slider(minimum = 2, maximum = 1000, value = 15, step = 1, label = "Minimum number of documents
|
290 |
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 3, step = 1, label = "Maximum number of topics")
|
291 |
|
292 |
with gr.Row():
|
@@ -305,7 +314,7 @@ with block:
|
|
305 |
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation. Files can be loaded in to save processing time in future.", value="Yes", choices=["Yes", "No"])
|
306 |
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
|
307 |
with gr.Row():
|
308 |
-
low_resource_mode_opt = gr.Dropdown(label = "Use low resource embeddings
|
309 |
create_llm_topic_labels = gr.Dropdown(label = "Create LLM-generated topic labels.", value="No", choices=["Yes", "No"])
|
310 |
save_topic_model = gr.Dropdown(label = "Save topic model to file.", value="Yes", choices=["Yes", "No"])
|
311 |
visualise_topics = gr.Dropdown(label = "Create a visualisation to map topics.", value="Yes", choices=["Yes", "No"])
|
|
|
2 |
from datetime import datetime
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
+
import time
|
6 |
+
#from sklearn.cluster import KMeans
|
7 |
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
from transformers import AutoModel, AutoTokenizer
|
9 |
from transformers.pipelines import pipeline
|
|
|
82 |
|
83 |
def extract_topics(in_files, in_file, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, in_label, anonymise_drop, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels, save_topic_model, visualise_topics):
|
84 |
|
85 |
+
all_tic = time.perf_counter()
|
86 |
+
|
87 |
output_list = []
|
88 |
file_list = [string.name for string in in_file]
|
89 |
|
|
|
125 |
|
126 |
embedding_model_pipe = pipeline("feature-extraction", model=embedding_model, tokenizer=tokenizer)
|
127 |
|
128 |
+
umap_model = UMAP(n_neighbors=15, n_components=5, random_state=random_seed)
|
129 |
+
|
130 |
elif low_resource_mode == "Yes":
|
131 |
+
print("Choosing low resource TF-IDF model")
|
132 |
embedding_model_pipe = make_pipeline(
|
133 |
TfidfVectorizer(),
|
134 |
TruncatedSVD(100) # 100 # To be compatible with zero shot, this needs to be lower than number of suggested topics
|
135 |
)
|
136 |
embedding_model = embedding_model_pipe
|
137 |
|
138 |
+
umap_model = TruncatedSVD(n_components=3, random_state=random_seed)
|
139 |
|
140 |
|
141 |
+
|
142 |
+
embeddings_out, reduced_embeddings = make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_model, return_intermediate_files, embeddings_super_compress, low_resource_mode, create_llm_topic_labels)
|
143 |
+
|
144 |
|
145 |
vectoriser_model = CountVectorizer(stop_words="english", ngram_range=(1, 2), min_df=0.1)
|
146 |
|
|
|
148 |
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
|
149 |
|
150 |
print("Create LLM topic labels:", create_llm_topic_labels)
|
151 |
+
representation_model = create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
|
|
|
|
|
|
|
|
|
152 |
|
153 |
|
154 |
if not candidate_topics:
|
155 |
+
|
|
|
156 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
157 |
vectorizer_model=vectoriser_model,
|
158 |
+
umap_model=umap_model,
|
159 |
min_topic_size= min_docs_slider,
|
160 |
nr_topics = max_topics_slider,
|
161 |
representation_model=representation_model,
|
|
|
175 |
zero_shot_topics = read_file(candidate_topics.name)
|
176 |
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
topic_model = BERTopic( embedding_model=embedding_model_pipe,
|
179 |
vectorizer_model=vectoriser_model,
|
180 |
+
umap_model=umap_model,
|
181 |
min_topic_size = min_docs_slider,
|
182 |
nr_topics = max_topics_slider,
|
183 |
zeroshot_topic_list = zero_shot_topics_lower,
|
|
|
248 |
|
249 |
if visualise_topics == "Yes":
|
250 |
# Visualise the topics:
|
251 |
+
vis_tic = time.perf_counter()
|
252 |
print("Creating visualisation")
|
253 |
topics_vis = topic_model.visualize_documents(label_col, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True)
|
254 |
|
255 |
+
all_toc = time.perf_counter()
|
256 |
+
time_out = f"Creating visualisation took {all_toc - vis_tic:0.1f} seconds"
|
257 |
+
print(time_out)
|
258 |
+
|
259 |
+
|
260 |
+
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
|
261 |
+
print(time_out)
|
262 |
+
|
263 |
return output_text, output_list, topics_vis
|
264 |
|
265 |
+
all_toc = time.perf_counter()
|
266 |
+
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
|
267 |
+
print(time_out)
|
268 |
+
|
269 |
return output_text, output_list, None
|
270 |
|
271 |
# , topic_model_save_name
|
|
|
295 |
candidate_topics = gr.File(label="Input topics from file (csv). File should have at least one column with a header and topic keywords in cells below. Topics will be taken from the first column of the file. Currently not compatible with low-resource embeddings.")
|
296 |
|
297 |
with gr.Row():
|
298 |
+
min_docs_slider = gr.Slider(minimum = 2, maximum = 1000, value = 15, step = 1, label = "Minimum number of documents per topic (use ~3 for low resource mode).")
|
299 |
max_topics_slider = gr.Slider(minimum = 2, maximum = 500, value = 3, step = 1, label = "Maximum number of topics")
|
300 |
|
301 |
with gr.Row():
|
|
|
314 |
return_intermediate_files = gr.Dropdown(label = "Return intermediate processing files from file preparation. Files can be loaded in to save processing time in future.", value="Yes", choices=["Yes", "No"])
|
315 |
embedding_super_compress = gr.Dropdown(label = "Round embeddings to three dp for smaller files with less accuracy.", value="No", choices=["Yes", "No"])
|
316 |
with gr.Row():
|
317 |
+
low_resource_mode_opt = gr.Dropdown(label = "Use low resource embeddings and processing.", value="No", choices=["Yes", "No"])
|
318 |
create_llm_topic_labels = gr.Dropdown(label = "Create LLM-generated topic labels.", value="No", choices=["Yes", "No"])
|
319 |
save_topic_model = gr.Dropdown(label = "Save topic model to file.", value="Yes", choices=["Yes", "No"])
|
320 |
visualise_topics = gr.Dropdown(label = "Create a visualisation to map topics.", value="Yes", choices=["Yes", "No"])
|
funcs/embeddings.py
CHANGED
@@ -35,7 +35,7 @@ def make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_mo
|
|
35 |
print("Creating simplified 'sparse' embeddings based on TfIDF")
|
36 |
embedding_model = make_pipeline(
|
37 |
TfidfVectorizer(),
|
38 |
-
TruncatedSVD(100)
|
39 |
)
|
40 |
|
41 |
# Fit the pipeline to the text data
|
@@ -69,7 +69,11 @@ def make_or_load_embeddings(docs, file_list, data_file_name_no_ext, embedding_mo
|
|
69 |
|
70 |
# Pre-reduce embeddings for visualisation purposes
|
71 |
if reduce_embeddings == "Yes":
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
return embeddings_out, None
|
|
|
35 |
print("Creating simplified 'sparse' embeddings based on TfIDF")
|
36 |
embedding_model = make_pipeline(
|
37 |
TfidfVectorizer(),
|
38 |
+
TruncatedSVD(100, random_state=random_seed)
|
39 |
)
|
40 |
|
41 |
# Fit the pipeline to the text data
|
|
|
69 |
|
70 |
# Pre-reduce embeddings for visualisation purposes
|
71 |
if reduce_embeddings == "Yes":
|
72 |
+
if low_resource_mode_opt == "No":
|
73 |
+
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out)
|
74 |
+
return embeddings_out, reduced_embeddings
|
75 |
+
else:
|
76 |
+
reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out)
|
77 |
+
return embeddings_out, reduced_embeddings
|
78 |
|
79 |
return embeddings_out, None
|
funcs/representation_model.py
CHANGED
@@ -121,7 +121,7 @@ keybert = KeyBERTInspired(random_state=random_seed)
|
|
121 |
# MMR
|
122 |
mmr = MaximalMarginalRelevance(diversity=0.3)
|
123 |
|
124 |
-
def create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag):
|
125 |
|
126 |
if create_llm_topic_labels == "Yes":
|
127 |
# Use llama.cpp to load in model
|
@@ -142,8 +142,11 @@ def create_representation_model(create_llm_topic_labels, llm_config, hf_model_na
|
|
142 |
}
|
143 |
|
144 |
elif create_llm_topic_labels == "No":
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
147 |
|
148 |
# Deprecated example using CTransformers. This package is not really used anymore
|
149 |
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config))
|
|
|
121 |
# MMR
|
122 |
mmr = MaximalMarginalRelevance(diversity=0.3)
|
123 |
|
124 |
+
def create_representation_model(create_llm_topic_labels, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode):
|
125 |
|
126 |
if create_llm_topic_labels == "Yes":
|
127 |
# Use llama.cpp to load in model
|
|
|
142 |
}
|
143 |
|
144 |
elif create_llm_topic_labels == "No":
|
145 |
+
if low_resource_mode == "Yes":
|
146 |
+
#representation_model = {"mmr": mmr}
|
147 |
+
representation_model = {"KeyBERT": keybert}
|
148 |
+
else:
|
149 |
+
representation_model = {"KeyBERT": keybert}
|
150 |
|
151 |
# Deprecated example using CTransformers. This package is not really used anymore
|
152 |
#model = AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', hf=True, **vars(llm_config))
|