Sonnyjim commited on
Commit
cdcd7af
·
1 Parent(s): e2dfc1e

Hopefully now LLM download from hub should work

Browse files
funcs/embeddings.py CHANGED
@@ -1,9 +1,6 @@
1
  import time
2
  import numpy as np
3
  from torch import cuda
4
- from sklearn.pipeline import make_pipeline
5
- from sklearn.decomposition import TruncatedSVD
6
- from sklearn.feature_extraction.text import TfidfVectorizer
7
 
8
  random_seed = 42
9
 
 
1
  import time
2
  import numpy as np
3
  from torch import cuda
 
 
 
4
 
5
  random_seed = 42
6
 
funcs/representation_model.py CHANGED
@@ -3,7 +3,7 @@ from bertopic.representation import LlamaCPP
3
  from llama_cpp import Llama
4
  from pydantic import BaseModel
5
  import torch.cuda
6
- from huggingface_hub import hf_hub_download
7
 
8
  from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation
9
  from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
@@ -119,17 +119,25 @@ def find_model_file(hf_model_name, hf_model_file, search_folder):
119
 
120
  # Specify your custom directory
121
  # Get HF_HOME environment variable or default to "~/.cache/huggingface/hub"
122
- hf_home_value = search_folder
123
 
124
  # Check if the directory exists, create it if it doesn't
125
- if not os.path.exists(hf_home_value):
126
- os.makedirs(hf_home_value)
127
 
128
- print("Downloading model to: ", hf_home_value)
129
 
130
- hf_hub_download(repo_id=hf_model_name, filename=hf_model_file, local_dir=hf_home_value) # cache_dir
 
 
 
 
 
 
 
 
131
 
132
- found_file = find_file(hf_home_value, file_to_find)
133
  return found_file
134
 
135
 
@@ -158,7 +166,7 @@ def create_representation_model(representation_type, llm_config, hf_model_name,
158
 
159
  found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value)
160
 
161
- llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, rope_freq_scale=0.5) #**llm_config.model_dump())#
162
  #print(llm.n_gpu_layers)
163
  llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
164
 
 
3
  from llama_cpp import Llama
4
  from pydantic import BaseModel
5
  import torch.cuda
6
+ from huggingface_hub import hf_hub_download, snapshot_download
7
 
8
  from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, BaseRepresentation
9
  from funcs.prompts import capybara_prompt, capybara_start, open_hermes_prompt, open_hermes_start, stablelm_prompt, stablelm_start
 
119
 
120
  # Specify your custom directory
121
  # Get HF_HOME environment variable or default to "~/.cache/huggingface/hub"
122
+ #hf_home_value = search_folder
123
 
124
  # Check if the directory exists, create it if it doesn't
125
+ #if not os.path.exists(hf_home_value):
126
+ # os.makedirs(hf_home_value)
127
 
128
+
129
 
130
+ found_file = hf_hub_download(repo_id=hf_model_name, filename=hf_model_file)#, local_dir=hf_home_value) # cache_dir
131
+
132
+ #path = snapshot_download(
133
+ # repo_id=hf_model_name,
134
+ # allow_patterns="config.json",
135
+ # local_files_only=False
136
+ #)
137
+
138
+ print("Downloaded model to: ", found_file)
139
 
140
+ #found_file = find_file(path, file_to_find)
141
  return found_file
142
 
143
 
 
166
 
167
  found_file = find_model_file(hf_model_name, hf_model_file, hf_home_value)
168
 
169
+ llm = Llama(model_path=found_file, stop=chosen_start_tag, n_gpu_layers=llm_config.n_gpu_layers, n_ctx=llm_config.n_ctx, rope_freq_scale=0.5, seed=seed) #**llm_config.model_dump())#
170
  #print(llm.n_gpu_layers)
171
  llm_model = LlamaCPP(llm, prompt=chosen_prompt)#, **gen_config.model_dump())
172