File size: 7,222 Bytes
7f2690b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import numpy as np
import os
import sys
import time
from tqdm import tqdm
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from config import init_args
import data
import models
from models import *
from utils import utils, torch_utils


DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def validation(args, net, criterion, data_loader, device='cuda'):
    # import pdb; pdb.set_trace()
    net.eval()
    pred_all = torch.tensor([]).to(device)
    target_all = torch.tensor([]).to(device)
    with torch.no_grad():
        for step, batch in tqdm(enumerate(data_loader), total=len(data_loader), desc="Validation"):
            pred, target = predict(args, net, batch, device)
            pred_all = torch.cat([pred_all, pred], dim=0)
            target_all = torch.cat([target_all, target], dim=0)

    res = criterion.evaluate(pred_all, target_all)
    torch.cuda.empty_cache()
    net.train()
    return res


def predict(args, net, batch, device):
    inputs = {
        'frames': batch['frames'].to(device)
    }
    pred = net(inputs)   
    target = batch['label'].to(device)  
    return pred, target


def train(args, device):
    # save dir
    gpus = torch.cuda.device_count()
    gpu_ids = list(range(gpus))

    # ----- make dirs for checkpoints ----- #
    sys.stdout = utils.LoggerOutput(os.path.join('checkpoints', args.exp, 'log.txt'))
    os.makedirs('./checkpoints/' + args.exp, exist_ok=True)

    writer = SummaryWriter(os.path.join('./checkpoints', args.exp, 'visualization'))
    # ------------------------------------- #
    tqdm.write('{}'.format(args)) 

    # ------------------------------------ #

    
    # ----- Dataset and Dataloader ----- #
    train_dataset = data.GreatestHitDataset(args, split='train')
    # train_dataset.getitem_test(1)
    train_loader = DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False)
    
    val_dataset = data.GreatestHitDataset(args, split='val')
    val_loader = DataLoader(
        val_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False)
    # --------------------------------- #

    # ----- Network ----- #
    net = models.VideoOnsetNet(pretrained=False).to(device)
    criterion = models.BCLoss(args)
    optimizer = torch_utils.make_optimizer(net, args)
    # --------------------- #

    # -------- Loading checkpoints weights ------------- #
    if args.resume:
        resume = './checkpoints/' + args.resume
        net, args.start_epoch = torch_utils.load_model(resume, net, device=device, strict=True)
        if args.resume_optim:
            tqdm.write('loading optimizer...')
            optim_state = torch.load(resume)['optimizer']
            optimizer.load_state_dict(optim_state)
            tqdm.write('loaded optimizer!')
        else:
            args.start_epoch = 0

    # ------------------- 
    net = nn.DataParallel(net, device_ids=gpu_ids)
    #  --------- Random or resume validation ------------ #
    res = validation(args, net, criterion, val_loader, device)
    writer.add_scalars('VideoOnset' + '/validation', res, args.start_epoch)
    tqdm.write("Beginning, Validation results: {}".format(res))
    tqdm.write('\n')

    # ----------------- Training ---------------- #
    # import pdb; pdb.set_trace()
    VALID_STEP = args.valid_step
    for epoch in range(args.start_epoch, args.epochs):
        running_loss = 0.0
        torch_utils.adjust_learning_rate(optimizer, epoch, args)
        for step, batch in tqdm(enumerate(train_loader), total=len(train_loader), desc="Training"):
            pred, target = predict(args, net, batch, device)
            loss = criterion(pred, target)        
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if step % 1 == 0:
                tqdm.write("Epoch: {}/{}, step: {}/{}, loss: {}".format(epoch+1, args.epochs, step+1, len(train_loader), loss))
                running_loss += loss.item()

            current_step = epoch * len(train_loader) + step + 1
            BOARD_STEP = 3
            if (step+1) % BOARD_STEP == 0:
                writer.add_scalar('VideoOnset' + '/training loss', running_loss / BOARD_STEP, current_step)
                running_loss = 0.0
        
        
        # ----------- Validtion -------------- #
        if (epoch + 1) % VALID_STEP == 0:
            res = validation(args, net, criterion, val_loader, device)
            writer.add_scalars('VideoOnset' + '/validation', res, epoch + 1)
            tqdm.write("Epoch: {}/{}, Validation results: {}".format(epoch + 1, args.epochs, res))

        # ---------- Save model ----------- #
        SAVE_STEP = args.save_step
        if (epoch + 1) % SAVE_STEP == 0:
            path = os.path.join('./checkpoints', args.exp, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')
            torch.save({'epoch': epoch + 1,
                        'step': current_step,
                        'state_dict': net.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        },
                        path)
        # --------------------------------- #
    torch.cuda.empty_cache()
    tqdm.write('Training Complete!')
    writer.close()


def test(args, device):
    # save dir
    gpus = torch.cuda.device_count()
    gpu_ids = list(range(gpus))

    # ----- make dirs for results ----- #
    sys.stdout = utils.LoggerOutput(os.path.join('results', args.exp, 'log.txt'))
    os.makedirs('./results/' + args.exp, exist_ok=True)
    # ------------------------------------- #
    tqdm.write('{}'.format(args)) 
    # ------------------------------------ #
    # ----- Dataset and Dataloader ----- #
    test_dataset = data.GreatestHitDataset(args, split='test')
    test_loader = DataLoader(
        test_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False)

    # --------------------------------- #
    # ----- Network ----- #
    net = models.VideoOnsetNet(pretrained=False).to(device)
    criterion = models.BCLoss(args)
    # -------- Loading checkpoints weights ------------- #
    if args.resume:
        resume = './checkpoints/' + args.resume
        net, _ = torch_utils.load_model(resume, net, device=device, strict=True)

    # ------------------- #
    net = nn.DataParallel(net, device_ids=gpu_ids)
    #  --------- Testing ------------ #
    res = validation(args, net, criterion, test_loader, device)
    tqdm.write("Testing results: {}".format(res))


# CUDA_VISIBLE_DEVICES=1 python main.py --exp='EXP1' --epochs=100 --batch_size=12 --num_workers=8 --save_step=10 --valid_step=1 --lr=0.0001 --optim='Adam' --repeat=1 --schedule='cos'
if __name__ == '__main__':
    args = init_args()
    if args.test_mode:
        test(args, DEVICE)
    else:
        train(args, DEVICE)