Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import is_torch_version, logging | |
from diffusers.utils.torch_utils import apply_freeu | |
from diffusers.models.activations import get_activation | |
from diffusers.models.normalization import AdaGroupNorm | |
from foleycrafter.models.auffusion.resnet import \ | |
Downsample2D, FirDownsample2D, FirUpsample2D, \ | |
KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D | |
from foleycrafter.models.auffusion.transformer_2d import \ | |
Transformer2DModel | |
from foleycrafter.models.auffusion.dual_transformer_2d import \ | |
DualTransformer2DModel | |
from foleycrafter.models.auffusion.attention_processor import \ | |
Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def get_down_block( | |
down_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
add_downsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
transformer_layers_per_block: int = 1, | |
num_attention_heads: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
downsample_padding: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
attention_type: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: float = 1.0, | |
cross_attention_norm: Optional[str] = None, | |
attention_head_dim: Optional[int] = None, | |
downsample_type: Optional[str] = None, | |
dropout: float = 0.0, | |
): | |
# If attn head dim is not defined, we default it to the number of heads | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
) | |
attention_head_dim = num_attention_heads | |
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
if down_block_type == "DownBlock2D": | |
return DownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "ResnetDownsampleBlock2D": | |
return ResnetDownsampleBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
) | |
elif down_block_type == "AttnDownBlock2D": | |
if add_downsample is False: | |
downsample_type = None | |
else: | |
downsample_type = downsample_type or "conv" # default to 'conv' | |
return AttnDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
downsample_type=downsample_type, | |
) | |
elif down_block_type == "CrossAttnDownBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") | |
return CrossAttnDownBlock2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
attention_type=attention_type, | |
) | |
elif down_block_type == "SimpleCrossAttnDownBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") | |
return SimpleCrossAttnDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
) | |
elif down_block_type == "SkipDownBlock2D": | |
return SkipDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "AttnSkipDownBlock2D": | |
return AttnSkipDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "DownEncoderBlock2D": | |
return DownEncoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "AttnDownEncoderBlock2D": | |
return AttnDownEncoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "KDownBlock2D": | |
return KDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
) | |
elif down_block_type == "KCrossAttnDownBlock2D": | |
return KCrossAttnDownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
add_self_attention=True if not add_downsample else False, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
add_upsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
resolution_idx: Optional[int] = None, | |
transformer_layers_per_block: int = 1, | |
num_attention_heads: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
attention_type: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: float = 1.0, | |
cross_attention_norm: Optional[str] = None, | |
attention_head_dim: Optional[int] = None, | |
upsample_type: Optional[str] = None, | |
dropout: float = 0.0, | |
) -> nn.Module: | |
# If attn head dim is not defined, we default it to the number of heads | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
) | |
attention_head_dim = num_attention_heads | |
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
if up_block_type == "UpBlock2D": | |
return UpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "ResnetUpsampleBlock2D": | |
return ResnetUpsampleBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
) | |
elif up_block_type == "CrossAttnUpBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") | |
return CrossAttnUpBlock2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
attention_type=attention_type, | |
) | |
elif up_block_type == "SimpleCrossAttnUpBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") | |
return SimpleCrossAttnUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
output_scale_factor=resnet_out_scale_factor, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
) | |
elif up_block_type == "AttnUpBlock2D": | |
if add_upsample is False: | |
upsample_type = None | |
else: | |
upsample_type = upsample_type or "conv" # default to 'conv' | |
return AttnUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
upsample_type=upsample_type, | |
) | |
elif up_block_type == "SkipUpBlock2D": | |
return SkipUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "AttnSkipUpBlock2D": | |
return AttnSkipUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "UpDecoderBlock2D": | |
return UpDecoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temb_channels=temb_channels, | |
) | |
elif up_block_type == "AttnUpDecoderBlock2D": | |
return AttnUpDecoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
attention_head_dim=attention_head_dim, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temb_channels=temb_channels, | |
) | |
elif up_block_type == "KUpBlock2D": | |
return KUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
) | |
elif up_block_type == "KCrossAttnUpBlock2D": | |
return KCrossAttnUpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
cross_attention_dim=cross_attention_dim, | |
attention_head_dim=attention_head_dim, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class AutoencoderTinyBlock(nn.Module): | |
""" | |
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU | |
blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
out_channels (`int`): The number of output channels. | |
act_fn (`str`): | |
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. | |
Returns: | |
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to | |
`out_channels`. | |
""" | |
def __init__(self, in_channels: int, out_channels: int, act_fn: str): | |
super().__init__() | |
act_fn = get_activation(act_fn) | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
act_fn, | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
act_fn, | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
) | |
self.skip = ( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) | |
if in_channels != out_channels | |
else nn.Identity() | |
) | |
self.fuse = nn.ReLU() | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
return self.fuse(self.conv(x) + self.skip(x)) | |
class UNetMidBlock2D(nn.Module): | |
""" | |
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
temb_channels (`int`): The number of temporal embedding channels. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): | |
The type of normalization to apply to the time embeddings. This can help to improve the performance of the | |
model on tasks with long-range temporal dependencies. | |
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | |
resnet_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in the group normalization layers of the resnet blocks. | |
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. | |
resnet_pre_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use pre-normalization for the resnet blocks. | |
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | |
attention_head_dim (`int`, *optional*, defaults to 1): | |
Dimension of a single attention head. The number of attention heads is determined based on this value and | |
the number of input channels. | |
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | |
Returns: | |
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
in_channels, height, width)`. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
attn_groups: Optional[int] = None, | |
resnet_pre_norm: bool = True, | |
add_attention: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
self.add_attention = add_attention | |
if attn_groups is None: | |
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." | |
) | |
attention_head_dim = in_channels | |
for _ in range(num_layers): | |
if self.add_attention: | |
attentions.append( | |
Attention( | |
in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=attn_groups, | |
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
else: | |
attentions.append(None) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
hidden_states = attn(hidden_states, temb=temb) | |
hidden_states = resnet(hidden_states, temb) | |
return hidden_states | |
class UNetMidBlock2DCrossAttn(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
output_scale_factor: float = 1.0, | |
cross_attention_dim: int = 1280, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
for i in range(num_layers): | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
return hidden_states | |
class UNetMidBlock2DSimpleCrossAttn(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
cross_attention_dim: int = 1280, | |
skip_time_act: bool = False, | |
only_cross_attention: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.attention_head_dim = attention_head_dim | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
self.num_heads = in_channels // self.attention_head_dim | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
) | |
] | |
attentions = [] | |
for _ in range(num_layers): | |
processor = ( | |
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() | |
) | |
attentions.append( | |
Attention( | |
query_dim=in_channels, | |
cross_attention_dim=in_channels, | |
heads=self.num_heads, | |
dim_head=self.attention_head_dim, | |
added_kv_proj_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
bias=True, | |
upcast_softmax=True, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
processor=processor, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) | |
if attention_mask is None: | |
# if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. | |
mask = None if encoder_hidden_states is None else encoder_attention_mask | |
else: | |
# when attention_mask is defined: we don't even check for encoder_attention_mask. | |
# this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. | |
# TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. | |
# then we can simplify this whole if/else block to: | |
# mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask | |
mask = attention_mask | |
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
# attn | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=mask, | |
**cross_attention_kwargs, | |
) | |
# resnet | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
return hidden_states | |
class AttnDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
downsample_padding: int = 1, | |
downsample_type: str = "conv", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.downsample_type = downsample_type | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | |
) | |
attention_head_dim = out_channels | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
attentions.append( | |
Attention( | |
out_channels, | |
heads=out_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=resnet_groups, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if downsample_type == "conv": | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
elif downsample_type == "resnet": | |
self.downsamplers = nn.ModuleList( | |
[ | |
ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
down=True, | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) | |
output_states = () | |
for resnet, attn in zip(self.resnets, self.attentions): | |
cross_attention_kwargs.update({"scale": lora_scale}) | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn(hidden_states, **cross_attention_kwargs) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
if self.downsample_type == "resnet": | |
hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale) | |
else: | |
hidden_states = downsampler(hidden_states, scale=lora_scale) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
downsample_padding: int = 1, | |
add_downsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
# Transformer2DModelWithSwitcher | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
additional_residuals: Optional[torch.FloatTensor] = None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
blocks = list(zip(self.resnets, self.attentions)) | |
for i, (resnet, attn) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
# apply additional residuals to the output of the last pair of resnet and attention blocks | |
if i == len(blocks) - 1 and additional_residuals is not None: | |
hidden_states = hidden_states + additional_residuals | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale=lora_scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class DownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale=scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class DownEncoderBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb=None, scale=scale) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale) | |
return hidden_states | |
class AttnDownEncoderBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | |
) | |
attention_head_dim = out_channels | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
attentions.append( | |
Attention( | |
out_channels, | |
heads=out_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=resnet_groups, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | |
for resnet, attn in zip(self.resnets, self.attentions): | |
hidden_states = resnet(hidden_states, temb=None, scale=scale) | |
cross_attention_kwargs = {"scale": scale} | |
hidden_states = attn(hidden_states, **cross_attention_kwargs) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale) | |
return hidden_states | |
class AttnSkipDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = np.sqrt(2.0), | |
add_downsample: bool = True, | |
): | |
super().__init__() | |
self.attentions = nn.ModuleList([]) | |
self.resnets = nn.ModuleList([]) | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | |
) | |
attention_head_dim = out_channels | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
self.resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(in_channels // 4, 32), | |
groups_out=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions.append( | |
Attention( | |
out_channels, | |
heads=out_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=32, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
if add_downsample: | |
self.resnet_down = ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
use_in_shortcut=True, | |
down=True, | |
kernel="fir", | |
) | |
self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) | |
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) | |
else: | |
self.resnet_down = None | |
self.downsamplers = None | |
self.skip_conv = None | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
skip_sample: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: | |
output_states = () | |
for resnet, attn in zip(self.resnets, self.attentions): | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
cross_attention_kwargs = {"scale": scale} | |
hidden_states = attn(hidden_states, **cross_attention_kwargs) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
hidden_states = self.resnet_down(hidden_states, temb, scale=scale) | |
for downsampler in self.downsamplers: | |
skip_sample = downsampler(skip_sample) | |
hidden_states = self.skip_conv(skip_sample) + hidden_states | |
output_states += (hidden_states,) | |
return hidden_states, output_states, skip_sample | |
class SkipDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = np.sqrt(2.0), | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
self.resnets = nn.ModuleList([]) | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
self.resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(in_channels // 4, 32), | |
groups_out=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if add_downsample: | |
self.resnet_down = ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
use_in_shortcut=True, | |
down=True, | |
kernel="fir", | |
) | |
self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) | |
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) | |
else: | |
self.resnet_down = None | |
self.downsamplers = None | |
self.skip_conv = None | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
skip_sample: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: | |
output_states = () | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb, scale) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
hidden_states = self.resnet_down(hidden_states, temb, scale) | |
for downsampler in self.downsamplers: | |
skip_sample = downsampler(skip_sample) | |
hidden_states = self.skip_conv(skip_sample) + hidden_states | |
output_states += (hidden_states,) | |
return hidden_states, output_states, skip_sample | |
class ResnetDownsampleBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
skip_time_act: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
down=True, | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, temb, scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class SimpleCrossAttnDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
skip_time_act: bool = False, | |
only_cross_attention: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
resnets = [] | |
attentions = [] | |
self.attention_head_dim = attention_head_dim | |
self.num_heads = out_channels // self.attention_head_dim | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
) | |
) | |
processor = ( | |
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() | |
) | |
attentions.append( | |
Attention( | |
query_dim=out_channels, | |
cross_attention_dim=out_channels, | |
heads=self.num_heads, | |
dim_head=attention_head_dim, | |
added_kv_proj_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
bias=True, | |
upcast_softmax=True, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
processor=processor, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
down=True, | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) | |
if attention_mask is None: | |
# if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. | |
mask = None if encoder_hidden_states is None else encoder_attention_mask | |
else: | |
# when attention_mask is defined: we don't even check for encoder_attention_mask. | |
# this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. | |
# TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. | |
# then we can simplify this whole if/else block to: | |
# mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask | |
mask = attention_mask | |
for resnet, attn in zip(self.resnets, self.attentions): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=mask, | |
**cross_attention_kwargs, | |
) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, temb, scale=lora_scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class KDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 4, | |
resnet_eps: float = 1e-5, | |
resnet_act_fn: str = "gelu", | |
resnet_group_size: int = 32, | |
add_downsample: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
groups = in_channels // resnet_group_size | |
groups_out = out_channels // resnet_group_size | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
dropout=dropout, | |
temb_channels=temb_channels, | |
groups=groups, | |
groups_out=groups_out, | |
eps=resnet_eps, | |
non_linearity=resnet_act_fn, | |
time_embedding_norm="ada_group", | |
conv_shortcut_bias=False, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
# YiYi's comments- might be able to use FirDownsample2D, look into details later | |
self.downsamplers = nn.ModuleList([KDownsample2D()]) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
return hidden_states, output_states | |
class KCrossAttnDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
cross_attention_dim: int, | |
dropout: float = 0.0, | |
num_layers: int = 4, | |
resnet_group_size: int = 32, | |
add_downsample: bool = True, | |
attention_head_dim: int = 64, | |
add_self_attention: bool = False, | |
resnet_eps: float = 1e-5, | |
resnet_act_fn: str = "gelu", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
groups = in_channels // resnet_group_size | |
groups_out = out_channels // resnet_group_size | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
dropout=dropout, | |
temb_channels=temb_channels, | |
groups=groups, | |
groups_out=groups_out, | |
eps=resnet_eps, | |
non_linearity=resnet_act_fn, | |
time_embedding_norm="ada_group", | |
conv_shortcut_bias=False, | |
) | |
) | |
attentions.append( | |
KAttentionBlock( | |
out_channels, | |
out_channels // attention_head_dim, | |
attention_head_dim, | |
cross_attention_dim=cross_attention_dim, | |
temb_channels=temb_channels, | |
attention_bias=True, | |
add_self_attention=add_self_attention, | |
cross_attention_norm="layer_norm", | |
group_size=resnet_group_size, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.attentions = nn.ModuleList(attentions) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList([KDownsample2D()]) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
for resnet, attn in zip(self.resnets, self.attentions): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
emb=temb, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
emb=temb, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
if self.downsamplers is None: | |
output_states += (None,) | |
else: | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
return hidden_states, output_states | |
class AttnUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: int = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
upsample_type: str = "conv", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.upsample_type = upsample_type | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." | |
) | |
attention_head_dim = out_channels | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
attentions.append( | |
Attention( | |
out_channels, | |
heads=out_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=resnet_groups, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if upsample_type == "conv": | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
elif upsample_type == "resnet": | |
self.upsamplers = nn.ModuleList( | |
[ | |
ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
up=True, | |
) | |
] | |
) | |
else: | |
self.upsamplers = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
cross_attention_kwargs = {"scale": scale} | |
hidden_states = attn(hidden_states, **cross_attention_kwargs) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
if self.upsample_type == "resnet": | |
hidden_states = upsampler(hidden_states, temb=temb, scale=scale) | |
else: | |
hidden_states = upsampler(hidden_states, scale=scale) | |
return hidden_states | |
class CrossAttnUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
# Transformer2DModelWithSwitcher | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale) | |
return hidden_states | |
class UpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size, scale=scale) | |
return hidden_states | |
class UpDecoderBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
temb_channels: Optional[int] = None, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb=temb, scale=scale) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class AttnUpDecoderBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
temb_channels: Optional[int] = None, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." | |
) | |
attention_head_dim = out_channels | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
attentions.append( | |
Attention( | |
out_channels, | |
heads=out_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, | |
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 | |
) -> torch.FloatTensor: | |
for resnet, attn in zip(self.resnets, self.attentions): | |
hidden_states = resnet(hidden_states, temb=temb, scale=scale) | |
cross_attention_kwargs = {"scale": scale} | |
hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, scale=scale) | |
return hidden_states | |
class AttnSkipUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = np.sqrt(2.0), | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
self.attentions = nn.ModuleList([]) | |
self.resnets = nn.ModuleList([]) | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
self.resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(resnet_in_channels + res_skip_channels // 4, 32), | |
groups_out=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." | |
) | |
attention_head_dim = out_channels | |
self.attentions.append( | |
Attention( | |
out_channels, | |
heads=out_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=32, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) | |
if add_upsample: | |
self.resnet_up = ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(out_channels // 4, 32), | |
groups_out=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
use_in_shortcut=True, | |
up=True, | |
kernel="fir", | |
) | |
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | |
self.skip_norm = torch.nn.GroupNorm( | |
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True | |
) | |
self.act = nn.SiLU() | |
else: | |
self.resnet_up = None | |
self.skip_conv = None | |
self.skip_norm = None | |
self.act = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
skip_sample=None, | |
scale: float = 1.0, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
cross_attention_kwargs = {"scale": scale} | |
hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs) | |
if skip_sample is not None: | |
skip_sample = self.upsampler(skip_sample) | |
else: | |
skip_sample = 0 | |
if self.resnet_up is not None: | |
skip_sample_states = self.skip_norm(hidden_states) | |
skip_sample_states = self.act(skip_sample_states) | |
skip_sample_states = self.skip_conv(skip_sample_states) | |
skip_sample = skip_sample + skip_sample_states | |
hidden_states = self.resnet_up(hidden_states, temb, scale=scale) | |
return hidden_states, skip_sample | |
class SkipUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = np.sqrt(2.0), | |
add_upsample: bool = True, | |
upsample_padding: int = 1, | |
): | |
super().__init__() | |
self.resnets = nn.ModuleList([]) | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
self.resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min((resnet_in_channels + res_skip_channels) // 4, 32), | |
groups_out=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) | |
if add_upsample: | |
self.resnet_up = ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=min(out_channels // 4, 32), | |
groups_out=min(out_channels // 4, 32), | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
use_in_shortcut=True, | |
up=True, | |
kernel="fir", | |
) | |
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | |
self.skip_norm = torch.nn.GroupNorm( | |
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True | |
) | |
self.act = nn.SiLU() | |
else: | |
self.resnet_up = None | |
self.skip_conv = None | |
self.skip_norm = None | |
self.act = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
skip_sample=None, | |
scale: float = 1.0, | |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
if skip_sample is not None: | |
skip_sample = self.upsampler(skip_sample) | |
else: | |
skip_sample = 0 | |
if self.resnet_up is not None: | |
skip_sample_states = self.skip_norm(hidden_states) | |
skip_sample_states = self.act(skip_sample_states) | |
skip_sample_states = self.skip_conv(skip_sample_states) | |
skip_sample = skip_sample + skip_sample_states | |
hidden_states = self.resnet_up(hidden_states, temb, scale=scale) | |
return hidden_states, skip_sample | |
class ResnetUpsampleBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
skip_time_act: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[ | |
ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
up=True, | |
) | |
] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, temb, scale=scale) | |
return hidden_states | |
class SimpleCrossAttnUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
attention_head_dim: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
skip_time_act: bool = False, | |
only_cross_attention: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.attention_head_dim = attention_head_dim | |
self.num_heads = out_channels // self.attention_head_dim | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
) | |
) | |
processor = ( | |
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() | |
) | |
attentions.append( | |
Attention( | |
query_dim=out_channels, | |
cross_attention_dim=out_channels, | |
heads=self.num_heads, | |
dim_head=self.attention_head_dim, | |
added_kv_proj_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
bias=True, | |
upcast_softmax=True, | |
only_cross_attention=only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
processor=processor, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[ | |
ResnetBlock2D( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
skip_time_act=skip_time_act, | |
up=True, | |
) | |
] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) | |
if attention_mask is None: | |
# if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. | |
mask = None if encoder_hidden_states is None else encoder_attention_mask | |
else: | |
# when attention_mask is defined: we don't even check for encoder_attention_mask. | |
# this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. | |
# TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. | |
# then we can simplify this whole if/else block to: | |
# mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask | |
mask = attention_mask | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# resnet | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=mask, | |
**cross_attention_kwargs, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, temb, scale=lora_scale) | |
return hidden_states | |
class KUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: int, | |
dropout: float = 0.0, | |
num_layers: int = 5, | |
resnet_eps: float = 1e-5, | |
resnet_act_fn: str = "gelu", | |
resnet_group_size: Optional[int] = 32, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
k_in_channels = 2 * out_channels | |
k_out_channels = in_channels | |
num_layers = num_layers - 1 | |
for i in range(num_layers): | |
in_channels = k_in_channels if i == 0 else out_channels | |
groups = in_channels // resnet_group_size | |
groups_out = out_channels // resnet_group_size | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=k_out_channels if (i == num_layers - 1) else out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=groups, | |
groups_out=groups_out, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
time_embedding_norm="ada_group", | |
conv_shortcut_bias=False, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([KUpsample2D()]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
res_hidden_states_tuple = res_hidden_states_tuple[-1] | |
if res_hidden_states_tuple is not None: | |
hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class KCrossAttnUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: int, | |
dropout: float = 0.0, | |
num_layers: int = 4, | |
resnet_eps: float = 1e-5, | |
resnet_act_fn: str = "gelu", | |
resnet_group_size: int = 32, | |
attention_head_dim: int = 1, # attention dim_head | |
cross_attention_dim: int = 768, | |
add_upsample: bool = True, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
is_first_block = in_channels == out_channels == temb_channels | |
is_middle_block = in_channels != out_channels | |
add_self_attention = True if is_first_block else False | |
self.has_cross_attention = True | |
self.attention_head_dim = attention_head_dim | |
# in_channels, and out_channels for the block (k-unet) | |
k_in_channels = out_channels if is_first_block else 2 * out_channels | |
k_out_channels = in_channels | |
num_layers = num_layers - 1 | |
for i in range(num_layers): | |
in_channels = k_in_channels if i == 0 else out_channels | |
groups = in_channels // resnet_group_size | |
groups_out = out_channels // resnet_group_size | |
if is_middle_block and (i == num_layers - 1): | |
conv_2d_out_channels = k_out_channels | |
else: | |
conv_2d_out_channels = None | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
conv_2d_out_channels=conv_2d_out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=groups, | |
groups_out=groups_out, | |
dropout=dropout, | |
non_linearity=resnet_act_fn, | |
time_embedding_norm="ada_group", | |
conv_shortcut_bias=False, | |
) | |
) | |
attentions.append( | |
KAttentionBlock( | |
k_out_channels if (i == num_layers - 1) else out_channels, | |
k_out_channels // attention_head_dim | |
if (i == num_layers - 1) | |
else out_channels // attention_head_dim, | |
attention_head_dim, | |
cross_attention_dim=cross_attention_dim, | |
temb_channels=temb_channels, | |
attention_bias=True, | |
add_self_attention=add_self_attention, | |
cross_attention_norm="layer_norm", | |
upcast_attention=upcast_attention, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.attentions = nn.ModuleList(attentions) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([KUpsample2D()]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
res_hidden_states_tuple = res_hidden_states_tuple[-1] | |
if res_hidden_states_tuple is not None: | |
hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
for resnet, attn in zip(self.resnets, self.attentions): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
emb=temb, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
emb=temb, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
# can potentially later be renamed to `No-feed-forward` attention | |
class KAttentionBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
attention_bias (`bool`, *optional*, defaults to `False`): | |
Configure if the attention layers should contain a bias parameter. | |
upcast_attention (`bool`, *optional*, defaults to `False`): | |
Set to `True` to upcast the attention computation to `float32`. | |
temb_channels (`int`, *optional*, defaults to 768): | |
The number of channels in the token embedding. | |
add_self_attention (`bool`, *optional*, defaults to `False`): | |
Set to `True` to add self-attention to the block. | |
cross_attention_norm (`str`, *optional*, defaults to `None`): | |
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
group_size (`int`, *optional*, defaults to 32): | |
The number of groups to separate the channels into for group normalization. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout: float = 0.0, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
upcast_attention: bool = False, | |
temb_channels: int = 768, # for ada_group_norm | |
add_self_attention: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
group_size: int = 32, | |
): | |
super().__init__() | |
self.add_self_attention = add_self_attention | |
# 1. Self-Attn | |
if add_self_attention: | |
self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=None, | |
cross_attention_norm=None, | |
) | |
# 2. Cross-Attn | |
self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_attention_norm=cross_attention_norm, | |
) | |
def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: | |
return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) | |
def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: | |
return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
# TODO: mark emb as non-optional (self.norm2 requires it). | |
# requires assessing impact of change to positional param interface. | |
emb: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
# 1. Self-Attention | |
if self.add_self_attention: | |
norm_hidden_states = self.norm1(hidden_states, emb) | |
height, weight = norm_hidden_states.shape[2:] | |
norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output = self._to_4d(attn_output, height, weight) | |
hidden_states = attn_output + hidden_states | |
# 2. Cross-Attention/None | |
norm_hidden_states = self.norm2(hidden_states, emb) | |
height, weight = norm_hidden_states.shape[2:] | |
norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output = self._to_4d(attn_output, height, weight) | |
hidden_states = attn_output + hidden_states | |
return hidden_states |