Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from foleycrafter.models.specvqgan.onset_baseline.models import VideoOnsetNet | |
class TimeDetector(nn.Module): | |
def __init__(self, video_length=150, audio_length=1024): | |
super(TimeDetector, self).__init__() | |
self.pred_net = VideoOnsetNet(pretrained=False) | |
self.soft_fn = nn.Tanh() | |
self.up_sampler = nn.Linear(video_length, audio_length) | |
def forward(self, inputs): | |
x = self.pred_net(inputs) | |
x = self.up_sampler(x) | |
x = self.soft_fn(x) | |
return x |