File size: 20,323 Bytes
df2accb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import collections
import glob
import os
import random
import time
import argparse
from collections import OrderedDict
import json5
import numpy as np
import glob
from torch.nn import functional as F
try:
from ruamel.yaml import YAML as yaml
except:
from ruamel_yaml import YAML as yaml
import torch
from utils.hparam import HParams
import logging
from logging import handlers
def str2bool(v):
"""Used in argparse.ArgumentParser.add_argument to indicate
that a type is a bool type and user can enter
- yes, true, t, y, 1, to represent True
- no, false, f, n, 0, to represent False
See https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse # noqa
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def find_checkpoint_of_mapper(mapper_ckpt_dir):
mapper_ckpts = glob.glob(os.path.join(mapper_ckpt_dir, "ckpts/*.pt"))
# Select the max steps
mapper_ckpts.sort()
mapper_weights_file = mapper_ckpts[-1]
return mapper_weights_file
def pad_f0_to_tensors(f0s, batched=None):
# Initialize
tensors = []
if batched == None:
# Get the max frame for padding
size = -1
for f0 in f0s:
size = max(size, f0.shape[-1])
tensor = torch.zeros(len(f0s), size)
for i, f0 in enumerate(f0s):
tensor[i, : f0.shape[-1]] = f0[:]
tensors.append(tensor)
else:
start = 0
while start + batched - 1 < len(f0s):
end = start + batched - 1
# Get the max frame for padding
size = -1
for i in range(start, end + 1):
size = max(size, f0s[i].shape[-1])
tensor = torch.zeros(batched, size)
for i in range(start, end + 1):
tensor[i - start, : f0s[i].shape[-1]] = f0s[i][:]
tensors.append(tensor)
start = start + batched
if start != len(f0s):
end = len(f0s)
# Get the max frame for padding
size = -1
for i in range(start, end):
size = max(size, f0s[i].shape[-1])
tensor = torch.zeros(len(f0s) - start, size)
for i in range(start, end):
tensor[i - start, : f0s[i].shape[-1]] = f0s[i][:]
tensors.append(tensor)
return tensors
def pad_mels_to_tensors(mels, batched=None):
"""
Args:
mels: A list of mel-specs
Returns:
tensors: A list of tensors containing the batched mel-specs
mel_frames: A list of tensors containing the frames of the original mel-specs
"""
# Initialize
tensors = []
mel_frames = []
# Split mel-specs into batches to avoid cuda memory exceed
if batched == None:
# Get the max frame for padding
size = -1
for mel in mels:
size = max(size, mel.shape[-1])
tensor = torch.zeros(len(mels), mels[0].shape[0], size)
mel_frame = torch.zeros(len(mels), dtype=torch.int32)
for i, mel in enumerate(mels):
tensor[i, :, : mel.shape[-1]] = mel[:]
mel_frame[i] = mel.shape[-1]
tensors.append(tensor)
mel_frames.append(mel_frame)
else:
start = 0
while start + batched - 1 < len(mels):
end = start + batched - 1
# Get the max frame for padding
size = -1
for i in range(start, end + 1):
size = max(size, mels[i].shape[-1])
tensor = torch.zeros(batched, mels[0].shape[0], size)
mel_frame = torch.zeros(batched, dtype=torch.int32)
for i in range(start, end + 1):
tensor[i - start, :, : mels[i].shape[-1]] = mels[i][:]
mel_frame[i - start] = mels[i].shape[-1]
tensors.append(tensor)
mel_frames.append(mel_frame)
start = start + batched
if start != len(mels):
end = len(mels)
# Get the max frame for padding
size = -1
for i in range(start, end):
size = max(size, mels[i].shape[-1])
tensor = torch.zeros(len(mels) - start, mels[0].shape[0], size)
mel_frame = torch.zeros(len(mels) - start, dtype=torch.int32)
for i in range(start, end):
tensor[i - start, :, : mels[i].shape[-1]] = mels[i][:]
mel_frame[i - start] = mels[i].shape[-1]
tensors.append(tensor)
mel_frames.append(mel_frame)
return tensors, mel_frames
def load_model_config(args):
"""Load model configurations (in args.json under checkpoint directory)
Args:
args (ArgumentParser): arguments to run bins/preprocess.py
Returns:
dict: dictionary that stores model configurations
"""
if args.checkpoint_dir is None:
assert args.checkpoint_file is not None
checkpoint_dir = os.path.split(args.checkpoint_file)[0]
else:
checkpoint_dir = args.checkpoint_dir
config_path = os.path.join(checkpoint_dir, "args.json")
print("config_path: ", config_path)
config = load_config(config_path)
return config
def remove_and_create(dir):
if os.path.exists(dir):
os.system("rm -r {}".format(dir))
os.makedirs(dir, exist_ok=True)
def has_existed(path, warning=False):
if not warning:
return os.path.exists(path)
if os.path.exists(path):
answer = input(
"The path {} has existed. \nInput 'y' (or hit Enter) to skip it, and input 'n' to re-write it [y/n]\n".format(
path
)
)
if not answer == "n":
return True
return False
def remove_older_ckpt(saved_model_name, checkpoint_dir, max_to_keep=5):
if os.path.exists(os.path.join(checkpoint_dir, "checkpoint")):
with open(os.path.join(checkpoint_dir, "checkpoint"), "r") as f:
ckpts = [x.strip() for x in f.readlines()]
else:
ckpts = []
ckpts.append(saved_model_name)
for item in ckpts[:-max_to_keep]:
if os.path.exists(os.path.join(checkpoint_dir, item)):
os.remove(os.path.join(checkpoint_dir, item))
with open(os.path.join(checkpoint_dir, "checkpoint"), "w") as f:
for item in ckpts[-max_to_keep:]:
f.write("{}\n".format(item))
def set_all_random_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def save_checkpoint(
args,
generator,
g_optimizer,
step,
discriminator=None,
d_optimizer=None,
max_to_keep=5,
):
saved_model_name = "model.ckpt-{}.pt".format(step)
checkpoint_path = os.path.join(args.checkpoint_dir, saved_model_name)
if discriminator and d_optimizer:
torch.save(
{
"generator": generator.state_dict(),
"discriminator": discriminator.state_dict(),
"g_optimizer": g_optimizer.state_dict(),
"d_optimizer": d_optimizer.state_dict(),
"global_step": step,
},
checkpoint_path,
)
else:
torch.save(
{
"generator": generator.state_dict(),
"g_optimizer": g_optimizer.state_dict(),
"global_step": step,
},
checkpoint_path,
)
print("Saved checkpoint: {}".format(checkpoint_path))
if os.path.exists(os.path.join(args.checkpoint_dir, "checkpoint")):
with open(os.path.join(args.checkpoint_dir, "checkpoint"), "r") as f:
ckpts = [x.strip() for x in f.readlines()]
else:
ckpts = []
ckpts.append(saved_model_name)
for item in ckpts[:-max_to_keep]:
if os.path.exists(os.path.join(args.checkpoint_dir, item)):
os.remove(os.path.join(args.checkpoint_dir, item))
with open(os.path.join(args.checkpoint_dir, "checkpoint"), "w") as f:
for item in ckpts[-max_to_keep:]:
f.write("{}\n".format(item))
def attempt_to_restore(
generator, g_optimizer, checkpoint_dir, discriminator=None, d_optimizer=None
):
checkpoint_list = os.path.join(checkpoint_dir, "checkpoint")
if os.path.exists(checkpoint_list):
checkpoint_filename = open(checkpoint_list).readlines()[-1].strip()
checkpoint_path = os.path.join(checkpoint_dir, "{}".format(checkpoint_filename))
print("Restore from {}".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path, map_location="cpu")
if generator:
if not list(generator.state_dict().keys())[0].startswith("module."):
raw_dict = checkpoint["generator"]
clean_dict = OrderedDict()
for k, v in raw_dict.items():
if k.startswith("module."):
clean_dict[k[7:]] = v
else:
clean_dict[k] = v
generator.load_state_dict(clean_dict)
else:
generator.load_state_dict(checkpoint["generator"])
if g_optimizer:
g_optimizer.load_state_dict(checkpoint["g_optimizer"])
global_step = 100000
if discriminator and "discriminator" in checkpoint.keys():
discriminator.load_state_dict(checkpoint["discriminator"])
global_step = checkpoint["global_step"]
print("restore discriminator")
if d_optimizer and "d_optimizer" in checkpoint.keys():
d_optimizer.load_state_dict(checkpoint["d_optimizer"])
print("restore d_optimizer...")
else:
global_step = 0
return global_step
class ExponentialMovingAverage(object):
def __init__(self, decay):
self.decay = decay
self.shadow = {}
def register(self, name, val):
self.shadow[name] = val.clone()
def update(self, name, x):
assert name in self.shadow
update_delta = self.shadow[name] - x
self.shadow[name] -= (1.0 - self.decay) * update_delta
def apply_moving_average(model, ema):
for name, param in model.named_parameters():
if name in ema.shadow:
ema.update(name, param.data)
def register_model_to_ema(model, ema):
for name, param in model.named_parameters():
if param.requires_grad:
ema.register(name, param.data)
class YParams(HParams):
def __init__(self, yaml_file):
if not os.path.exists(yaml_file):
raise IOError("yaml file: {} is not existed".format(yaml_file))
super().__init__()
self.d = collections.OrderedDict()
with open(yaml_file) as fp:
for _, v in yaml().load(fp).items():
for k1, v1 in v.items():
try:
if self.get(k1):
self.set_hparam(k1, v1)
else:
self.add_hparam(k1, v1)
self.d[k1] = v1
except Exception:
import traceback
print(traceback.format_exc())
# @property
def get_elements(self):
return self.d.items()
def override_config(base_config, new_config):
"""Update new configurations in the original dict with the new dict
Args:
base_config (dict): original dict to be overridden
new_config (dict): dict with new configurations
Returns:
dict: updated configuration dict
"""
for k, v in new_config.items():
if type(v) == dict:
if k not in base_config.keys():
base_config[k] = {}
base_config[k] = override_config(base_config[k], v)
else:
base_config[k] = v
return base_config
def get_lowercase_keys_config(cfg):
"""Change all keys in cfg to lower case
Args:
cfg (dict): dictionary that stores configurations
Returns:
dict: dictionary that stores configurations
"""
updated_cfg = dict()
for k, v in cfg.items():
if type(v) == dict:
v = get_lowercase_keys_config(v)
updated_cfg[k.lower()] = v
return updated_cfg
def _load_config(config_fn, lowercase=False):
"""Load configurations into a dictionary
Args:
config_fn (str): path to configuration file
lowercase (bool, optional): whether changing keys to lower case. Defaults to False.
Returns:
dict: dictionary that stores configurations
"""
with open(config_fn, "r") as f:
data = f.read()
config_ = json5.loads(data)
if "base_config" in config_:
# load configurations from new path
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"])
p_config_ = _load_config(p_config_path)
config_ = override_config(p_config_, config_)
if lowercase:
# change keys in config_ to lower case
config_ = get_lowercase_keys_config(config_)
return config_
def load_config(config_fn, lowercase=False):
"""Load configurations into a dictionary
Args:
config_fn (str): path to configuration file
lowercase (bool, optional): _description_. Defaults to False.
Returns:
JsonHParams: an object that stores configurations
"""
config_ = _load_config(config_fn, lowercase=lowercase)
# create an JsonHParams object with configuration dict
cfg = JsonHParams(**config_)
return cfg
def save_config(save_path, cfg):
"""Save configurations into a json file
Args:
save_path (str): path to save configurations
cfg (dict): dictionary that stores configurations
"""
with open(save_path, "w") as f:
json5.dump(
cfg, f, ensure_ascii=False, indent=4, quote_keys=True, sort_keys=True
)
class JsonHParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = JsonHParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
class ValueWindow:
def __init__(self, window_size=100):
self._window_size = window_size
self._values = []
def append(self, x):
self._values = self._values[-(self._window_size - 1) :] + [x]
@property
def sum(self):
return sum(self._values)
@property
def count(self):
return len(self._values)
@property
def average(self):
return self.sum / max(1, self.count)
def reset(self):
self._values = []
class Logger(object):
def __init__(
self,
filename,
level="info",
when="D",
backCount=10,
fmt="%(asctime)s : %(message)s",
):
self.level_relations = {
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"crit": logging.CRITICAL,
}
if level == "debug":
fmt = "%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s"
self.logger = logging.getLogger(filename)
format_str = logging.Formatter(fmt)
self.logger.setLevel(self.level_relations.get(level))
sh = logging.StreamHandler()
sh.setFormatter(format_str)
th = handlers.TimedRotatingFileHandler(
filename=filename, when=when, backupCount=backCount, encoding="utf-8"
)
th.setFormatter(format_str)
self.logger.addHandler(sh)
self.logger.addHandler(th)
self.logger.info(
"==========================New Starting Here=============================="
)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2, 3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1.0 / norm_type)
return total_norm
def get_current_time():
pass
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
>>> lengths = torch.tensor([1, 3, 2, 5])
>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
|