Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import numpy as np
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import matplotlib.dates as mdates
|
9 |
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
|
|
|
10 |
def get_popular_tickers():
|
11 |
return [
|
12 |
"AAPL", "MSFT", "GOOGL", "AMZN", "META", "TSLA", "NVDA", "JPM",
|
@@ -15,6 +17,10 @@ def get_popular_tickers():
|
|
15 |
|
16 |
def predict_stock(ticker, train_data_points, prediction_days):
|
17 |
try:
|
|
|
|
|
|
|
|
|
18 |
# Configurar el pipeline
|
19 |
pipeline = ChronosPipeline.from_pretrained(
|
20 |
"amazon/chronos-t5-mini",
|
@@ -84,7 +90,6 @@ def predict_stock(ticker, train_data_points, prediction_days):
|
|
84 |
|
85 |
# Calcular métricas si hay datos reales para comparar
|
86 |
overlap_end_index = train_data_points + prediction_days
|
87 |
-
validation_data = None
|
88 |
if overlap_end_index <= total_points:
|
89 |
real_future_dates = df['Date'][train_data_points:overlap_end_index]
|
90 |
real_future_data = df[f'{ticker}_Close'][train_data_points:overlap_end_index].values
|
@@ -129,7 +134,8 @@ def predict_stock(ticker, train_data_points, prediction_days):
|
|
129 |
|
130 |
plt.tight_layout()
|
131 |
|
132 |
-
# Crear
|
|
|
133 |
prediction_df = pd.DataFrame({
|
134 |
'Date': prediction_dates,
|
135 |
'Predicted_Price': median,
|
@@ -145,10 +151,12 @@ def predict_stock(ticker, train_data_points, prediction_days):
|
|
145 |
prediction_df = prediction_df[prediction_df['Date'].isin(matching_dates)]
|
146 |
prediction_df['Real_Price'] = real_future_data[:len(prediction_df)]
|
147 |
|
148 |
-
|
149 |
-
prediction_df.to_csv(
|
|
|
150 |
|
151 |
-
|
|
|
152 |
|
153 |
except Exception as e:
|
154 |
print(f"Error: {str(e)}")
|
@@ -166,7 +174,7 @@ with gr.Blocks() as demo:
|
|
166 |
)
|
167 |
train_data_points = gr.Slider(
|
168 |
minimum=50,
|
169 |
-
maximum=5000,
|
170 |
value=1000,
|
171 |
step=1,
|
172 |
label="Número de Datos para Entrenamiento"
|
@@ -179,7 +187,7 @@ with gr.Blocks() as demo:
|
|
179 |
label="Número de Días a Predecir"
|
180 |
)
|
181 |
predict_btn = gr.Button("Predecir")
|
182 |
-
|
183 |
with gr.Column():
|
184 |
plot_output = gr.Plot(label="Gráfico de Predicción")
|
185 |
download_btn = gr.File(label="Descargar Predicciones")
|
@@ -190,7 +198,7 @@ with gr.Blocks() as demo:
|
|
190 |
hist = stock.history(period="max")
|
191 |
total_points = len(hist)
|
192 |
# Actualizar el deslizador para reflejar el número total de puntos disponibles
|
193 |
-
return gr.update(maximum=total_points, value=min(1000, total_points))
|
194 |
|
195 |
ticker.change(
|
196 |
fn=update_train_data_points,
|
@@ -204,4 +212,4 @@ with gr.Blocks() as demo:
|
|
204 |
outputs=[plot_output, download_btn]
|
205 |
)
|
206 |
|
207 |
-
demo.launch(
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import matplotlib.dates as mdates
|
9 |
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
10 |
+
import tempfile
|
11 |
+
|
12 |
def get_popular_tickers():
|
13 |
return [
|
14 |
"AAPL", "MSFT", "GOOGL", "AMZN", "META", "TSLA", "NVDA", "JPM",
|
|
|
17 |
|
18 |
def predict_stock(ticker, train_data_points, prediction_days):
|
19 |
try:
|
20 |
+
# Asegurar que los parámetros sean enteros
|
21 |
+
train_data_points = int(train_data_points)
|
22 |
+
prediction_days = int(prediction_days)
|
23 |
+
|
24 |
# Configurar el pipeline
|
25 |
pipeline = ChronosPipeline.from_pretrained(
|
26 |
"amazon/chronos-t5-mini",
|
|
|
90 |
|
91 |
# Calcular métricas si hay datos reales para comparar
|
92 |
overlap_end_index = train_data_points + prediction_days
|
|
|
93 |
if overlap_end_index <= total_points:
|
94 |
real_future_dates = df['Date'][train_data_points:overlap_end_index]
|
95 |
real_future_data = df[f'{ticker}_Close'][train_data_points:overlap_end_index].values
|
|
|
134 |
|
135 |
plt.tight_layout()
|
136 |
|
137 |
+
# Crear un archivo temporal para el CSV
|
138 |
+
temp_csv = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
|
139 |
prediction_df = pd.DataFrame({
|
140 |
'Date': prediction_dates,
|
141 |
'Predicted_Price': median,
|
|
|
151 |
prediction_df = prediction_df[prediction_df['Date'].isin(matching_dates)]
|
152 |
prediction_df['Real_Price'] = real_future_data[:len(prediction_df)]
|
153 |
|
154 |
+
# Guardar el DataFrame en el archivo temporal
|
155 |
+
prediction_df.to_csv(temp_csv.name, index=False)
|
156 |
+
temp_csv.close()
|
157 |
|
158 |
+
# Retornar el gráfico y la ruta del archivo CSV
|
159 |
+
return plt, temp_csv.name
|
160 |
|
161 |
except Exception as e:
|
162 |
print(f"Error: {str(e)}")
|
|
|
174 |
)
|
175 |
train_data_points = gr.Slider(
|
176 |
minimum=50,
|
177 |
+
maximum=5000,
|
178 |
value=1000,
|
179 |
step=1,
|
180 |
label="Número de Datos para Entrenamiento"
|
|
|
187 |
label="Número de Días a Predecir"
|
188 |
)
|
189 |
predict_btn = gr.Button("Predecir")
|
190 |
+
|
191 |
with gr.Column():
|
192 |
plot_output = gr.Plot(label="Gráfico de Predicción")
|
193 |
download_btn = gr.File(label="Descargar Predicciones")
|
|
|
198 |
hist = stock.history(period="max")
|
199 |
total_points = len(hist)
|
200 |
# Actualizar el deslizador para reflejar el número total de puntos disponibles
|
201 |
+
return gr.Slider.update(maximum=total_points, value=min(1000, total_points))
|
202 |
|
203 |
ticker.change(
|
204 |
fn=update_train_data_points,
|
|
|
212 |
outputs=[plot_output, download_btn]
|
213 |
)
|
214 |
|
215 |
+
demo.launch()
|