Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import librosa
|
@@ -51,9 +52,8 @@ class TwiTranscriptionModel:
|
|
51 |
return transcriptions
|
52 |
|
53 |
@st.cache_resource
|
54 |
-
def
|
55 |
try:
|
56 |
-
# Modify this path if your model is stored differently in Hugging Face
|
57 |
with open('twi_transcription_model.pkl', 'rb') as f:
|
58 |
model_data = pickle.load(f)
|
59 |
return TwiTranscriptionModel(
|
@@ -88,6 +88,49 @@ def calculate_error_rates(reference, hypothesis):
|
|
88 |
except Exception as e:
|
89 |
return None, None
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def main():
|
92 |
st.set_page_config(
|
93 |
page_title="Twi Speech Recognition",
|
@@ -95,77 +138,55 @@ def main():
|
|
95 |
layout="wide"
|
96 |
)
|
97 |
|
98 |
-
#
|
99 |
-
model =
|
100 |
if model is None:
|
101 |
-
st.error("Failed to load model. Please
|
102 |
return
|
103 |
|
104 |
-
st.title("Twi Speech
|
105 |
-
st.write("Upload an audio file
|
106 |
|
107 |
# File uploader
|
108 |
audio_file = st.file_uploader("Choose an audio file", type=['wav', 'mp3', 'ogg'])
|
109 |
|
110 |
# Optional reference text
|
111 |
-
reference_text = st.text_area("Reference text (optional)",
|
112 |
-
help="Enter the correct transcription to calculate error rates")
|
113 |
|
114 |
if audio_file is not None:
|
115 |
if st.button("Transcribe"):
|
116 |
-
with st.spinner("Processing audio... This may take a
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
if
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
st.write("### Audio Details:")
|
142 |
-
st.json({
|
143 |
-
'sample_rate': int(sr),
|
144 |
-
'duration': float(len(audio_data) / sr)
|
145 |
-
})
|
146 |
-
|
147 |
-
# Error Metrics (if reference text provided)
|
148 |
-
if reference_text:
|
149 |
-
error_wer, error_cer = calculate_error_rates(reference_text, transcription)
|
150 |
-
if error_wer is not None and error_cer is not None:
|
151 |
-
st.write("### Error Metrics:")
|
152 |
-
st.json({
|
153 |
-
'word_error_rate': round(float(error_wer), 4),
|
154 |
-
'character_error_rate': round(float(error_cer), 4)
|
155 |
-
})
|
156 |
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
-
main()
|
162 |
-
|
163 |
-
# Requirements for Hugging Face (create a requirements.txt)
|
164 |
-
"""
|
165 |
-
streamlit
|
166 |
-
numpy
|
167 |
-
librosa
|
168 |
-
tensorflow
|
169 |
-
jiwer
|
170 |
-
soundfile
|
171 |
-
"""
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import librosa
|
|
|
52 |
return transcriptions
|
53 |
|
54 |
@st.cache_resource
|
55 |
+
def get_model():
|
56 |
try:
|
|
|
57 |
with open('twi_transcription_model.pkl', 'rb') as f:
|
58 |
model_data = pickle.load(f)
|
59 |
return TwiTranscriptionModel(
|
|
|
88 |
except Exception as e:
|
89 |
return None, None
|
90 |
|
91 |
+
def process_audio_file(audio_file, model, reference_text=None):
|
92 |
+
"""Process uploaded audio file and return transcription"""
|
93 |
+
try:
|
94 |
+
# Read audio file
|
95 |
+
audio_data, sr = librosa.load(audio_file, sr=None)
|
96 |
+
if len(audio_data.shape) > 1:
|
97 |
+
audio_data = np.mean(audio_data, axis=1)
|
98 |
+
|
99 |
+
# Extract features
|
100 |
+
mfcc_features = extract_mfcc(audio_data, sr)
|
101 |
+
mfcc_features = np.expand_dims(mfcc_features, axis=0)
|
102 |
+
|
103 |
+
# Get transcription
|
104 |
+
transcription = model.predict(mfcc_features)[0]
|
105 |
+
|
106 |
+
# Prepare response
|
107 |
+
response = {
|
108 |
+
'status': 'success',
|
109 |
+
'transcription': transcription,
|
110 |
+
'audio_details': {
|
111 |
+
'sample_rate': int(sr),
|
112 |
+
'duration': float(len(audio_data) / sr)
|
113 |
+
},
|
114 |
+
'audio_data': audio_data,
|
115 |
+
'sample_rate': sr
|
116 |
+
}
|
117 |
+
|
118 |
+
# Add error metrics if reference provided
|
119 |
+
if reference_text:
|
120 |
+
error_wer, error_cer = calculate_error_rates(reference_text, transcription)
|
121 |
+
if error_wer is not None and error_cer is not None:
|
122 |
+
response['error_metrics'] = {
|
123 |
+
'word_error_rate': round(float(error_wer), 4),
|
124 |
+
'character_error_rate': round(float(error_cer), 4)
|
125 |
+
}
|
126 |
+
|
127 |
+
return response
|
128 |
+
except Exception as e:
|
129 |
+
return {
|
130 |
+
'status': 'error',
|
131 |
+
'error': str(e)
|
132 |
+
}
|
133 |
+
|
134 |
def main():
|
135 |
st.set_page_config(
|
136 |
page_title="Twi Speech Recognition",
|
|
|
138 |
layout="wide"
|
139 |
)
|
140 |
|
141 |
+
# Initialize model
|
142 |
+
model = get_model()
|
143 |
if model is None:
|
144 |
+
st.error("Failed to load model. Please try again later.")
|
145 |
return
|
146 |
|
147 |
+
st.title("Twi Speech Recognition")
|
148 |
+
st.write("Upload an audio file for transcription")
|
149 |
|
150 |
# File uploader
|
151 |
audio_file = st.file_uploader("Choose an audio file", type=['wav', 'mp3', 'ogg'])
|
152 |
|
153 |
# Optional reference text
|
154 |
+
reference_text = st.text_area("Reference text (optional)", "", help="Enter the correct transcription to calculate error rates")
|
|
|
155 |
|
156 |
if audio_file is not None:
|
157 |
if st.button("Transcribe"):
|
158 |
+
with st.spinner("Processing audio... This may take a few minutes."):
|
159 |
+
result = process_audio_file(
|
160 |
+
audio_file,
|
161 |
+
model,
|
162 |
+
reference_text if reference_text else None
|
163 |
+
)
|
164 |
+
|
165 |
+
if result['status'] == 'success':
|
166 |
+
st.success("Transcription completed!")
|
167 |
+
|
168 |
+
# Convert audio data to bytes for Streamlit audio player
|
169 |
+
audio_bytes = BytesIO()
|
170 |
+
sf.write(audio_bytes, result['audio_data'], result['sample_rate'], format='WAV')
|
171 |
+
audio_bytes.seek(0)
|
172 |
+
|
173 |
+
# Audio Playback
|
174 |
+
st.audio(audio_bytes, format='audio/wav')
|
175 |
+
|
176 |
+
# Transcription Display
|
177 |
+
st.write("### Transcription:")
|
178 |
+
st.write(result['transcription'])
|
179 |
+
|
180 |
+
# Audio Details
|
181 |
+
st.write("### Audio Details:")
|
182 |
+
st.json(result['audio_details'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
# Error Metrics
|
185 |
+
if 'error_metrics' in result:
|
186 |
+
st.write("### Error Metrics:")
|
187 |
+
st.json(result['error_metrics'])
|
188 |
+
else:
|
189 |
+
st.error(f"Error: {result.get('error', 'Unknown error')}")
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|