sensei-ml commited on
Commit
6878a6a
verified
1 Parent(s): 125371d

Update model/model.py

Browse files
Files changed (1) hide show
  1. model/model.py +4 -1
model/model.py CHANGED
@@ -6,6 +6,8 @@ from transformers import AutoModelForImageClassification
6
  def predict(image_path):
7
  model = AutoModelForImageClassification.from_pretrained('sensei-ml/concrete_crack_images_classification')
8
  model.eval()
 
 
9
 
10
  with torch.no_grad():
11
  # Convertir el array de NumPy a un tensor de PyTorch
@@ -13,7 +15,7 @@ def predict(image_path):
13
 
14
  # Redimensionar la imagen usando funciones de transformaci贸n que soporten tensores
15
  image_tensor = F.resize(image_tensor, [227, 227])
16
-
17
  # Normalizaci贸n
18
  transform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
19
 
@@ -21,6 +23,7 @@ def predict(image_path):
21
  input_tensor = transform(image_tensor).unsqueeze(0) # A帽adir la dimensi贸n del batch
22
 
23
  # Hacer predicciones
 
24
  outputs = model(input_tensor)
25
  logits = outputs.logits
26
  probabilities = torch.nn.functional.softmax(logits, dim=1)[0]
 
6
  def predict(image_path):
7
  model = AutoModelForImageClassification.from_pretrained('sensei-ml/concrete_crack_images_classification')
8
  model.eval()
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+ model.to(device)
11
 
12
  with torch.no_grad():
13
  # Convertir el array de NumPy a un tensor de PyTorch
 
15
 
16
  # Redimensionar la imagen usando funciones de transformaci贸n que soporten tensores
17
  image_tensor = F.resize(image_tensor, [227, 227])
18
+
19
  # Normalizaci贸n
20
  transform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
21
 
 
23
  input_tensor = transform(image_tensor).unsqueeze(0) # A帽adir la dimensi贸n del batch
24
 
25
  # Hacer predicciones
26
+ input_tensor = input_tensor.to(device)
27
  outputs = model(input_tensor)
28
  logits = outputs.logits
29
  probabilities = torch.nn.functional.softmax(logits, dim=1)[0]