File size: 20,018 Bytes
e66c4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import csv
from pathlib import Path
from shutil import rmtree
from typing import List, Tuple, Dict, Union, Optional, Any, Iterable
from tqdm import tqdm

import psutil
import requests
from requests.exceptions import MissingSchema

import torch
import gradio as gr

from llama_cpp import Llama
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
from huggingface_hub import hf_hub_download, list_repo_tree, list_repo_files, repo_info, repo_exists, snapshot_download

from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings

# imports for annotations
from langchain.docstore.document import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

from config import (
    LLM_MODELS_PATH,
    EMBED_MODELS_PATH,
    GENERATE_KWARGS,
    LOADER_CLASSES,
)


# type annotations
CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]]
LLM_MODEL_DICT = Dict[str, Llama]
EMBED_MODEL_DICT = Dict[str, Embeddings]


# ===================== ADDITIONAL FUNCS =======================

# getting the amount of free memory on disk, CPU and GPU
def get_memory_usage() -> str:
    print_memory = ''

    memory_type = 'Disk'
    psutil_stats = psutil.disk_usage('.')
    memory_total = psutil_stats.total / 1024**3
    memory_usage = psutil_stats.used / 1024**3
    print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'

    memory_type = 'CPU'
    psutil_stats = psutil.virtual_memory()
    memory_total = psutil_stats.total / 1024**3
    memory_usage =  memory_total - (psutil_stats.available / 1024**3)
    print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'

    if torch.cuda.is_available():
        memory_type = 'GPU'
        memory_free, memory_total = torch.cuda.mem_get_info()
        memory_usage = memory_total - memory_free
        print_memory += f'{memory_type} Menory Usage: {memory_usage / 1024**3:.2f} / {memory_total:.2f} GB\n'

    print_memory = f'---------------\n{print_memory}---------------'
    return print_memory


# clearing the list of documents
def clear_documents(documents: Iterable[Document]) -> Iterable[Document]:
    def clear_text(text: str) -> str:
        lines = text.split('\n')
        lines = [line for line in lines if len(line.strip()) > 2]
        text = '\n'.join(lines).strip()
        return text

    output_documents = []
    for document in documents:
        text = clear_text(document.page_content)
        if len(text) > 10:
            document.page_content = text
            output_documents.append(document)
    return output_documents


# ===================== INTERFACE FUNCS =============================


# ------------- LLM AND EMBEDDING MODELS LOADING ------------------------

# downloading file by URL link and displaying progress bars tqdm and gradio
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
    response = requests.get(file_url, stream=True)
    if response.status_code != 200:
        raise Exception(f'The file is not available for download at the link: {file_url}')
    total_size = int(response.headers.get('content-length', 0))
    progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
    progress_gradio = gr.Progress()
    completed_size = 0
    with open(file_path, 'wb') as file:
        for data in response.iter_content(chunk_size=4096):
            size = file.write(data)
            progress_tqdm.update(size)
            completed_size += size
            desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
            progress_gradio(completed_size/total_size, desc=desc)


# loading and initializing the GGUF model
def load_llm_model(model_repo: str, model_file: str) -> Tuple[LLM_MODEL_DICT, str, str]:
    llm_model = None
    load_log = ''
    support_system_role = False

    if isinstance(model_file, list):
        load_log += 'No model selected\n'
        return {'llm_model': llm_model}, support_system_role, load_log
        
    if '(' in model_file:
        model_file = model_file.split('(')[0].rstrip()

    progress = gr.Progress()
    progress(0.3, desc='Step 1/2: Download the GGUF file')
    model_path = LLM_MODELS_PATH / model_file

    if model_path.is_file():
        load_log += f'Model {model_file} already loaded, reinitializing\n'
    else:
        try:
            gguf_url = f'https://huggingface.co/{model_repo}/resolve/main/{model_file}'
            download_file(gguf_url, model_path)
            load_log += f'Model {model_file} loaded\n'
        except Exception as ex:
            model_path = ''
            load_log += f'Error loading model, error code:\n{ex}\n'

    if model_path:
        progress(0.7, desc='Step 2/2: Initialize the model')
        try:
            llm_model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=False)
            support_system_role = 'System role not supported' not in llm_model.metadata['tokenizer.chat_template']
            load_log += f'Model {model_file} initialized, max context size is {llm_model.n_ctx()} tokens\n'
        except Exception as ex:
            load_log += f'Error initializing model, error code:\n{ex}\n'

    llm_model = {'llm_model': llm_model}
    return llm_model, support_system_role, load_log


# loading and initializing the embedding model
def load_embed_model(model_repo: str) -> Tuple[Dict[str, HuggingFaceEmbeddings], str]:
    embed_model = None
    load_log = ''

    if isinstance(model_repo, list):
        load_log = 'No model selected'
        return embed_model, load_log

    progress = gr.Progress()
    folder_name = model_repo.replace('/', '_')
    folder_path = EMBED_MODELS_PATH / folder_name
    if Path(folder_path).is_dir():
        load_log += f'Reinitializing model {model_repo} \n'
    else:
        progress(0.5, desc='Step 1/2: Download model repository')
        snapshot_download(
            repo_id=model_repo,
            local_dir=folder_path,
            ignore_patterns='*.h5',
        )
        load_log += f'Model {model_repo} loaded\n'

    progress(0.7, desc='Шаг 2/2: Инициализация модели')
    model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
    embed_model = HuggingFaceEmbeddings(
        model_name=str(folder_path), 
        model_kwargs=model_kwargs,
        # encode_kwargs={'normalize_embeddings': True},
        )
    load_log += f'Embeddings model {model_repo} initialized\n'
    load_log += f'Please upload documents and initialize database again\n'
    embed_model = {'embed_model': embed_model}
    return embed_model, load_log


# adding a new HF repository new_model_repo to the current list of model_repos
def add_new_model_repo(new_model_repo: str, model_repos: List[str]) -> Tuple[gr.Dropdown, str]:
    load_log = ''
    repo = new_model_repo.strip()
    if repo:
        repo = repo.split('/')[-2:]
        if len(repo) == 2:
            repo = '/'.join(repo).split('?')[0]
            if repo_exists(repo) and repo not in model_repos:
                model_repos.insert(0, repo)
                load_log += f'Model repository {repo} successfully added\n'
            else:
                load_log += 'Invalid HF repository name or model already in the list\n'
        else:
            load_log += 'Invalid link to HF repository\n'
    else:
        load_log += 'Empty line in HF repository field\n'
    model_repo_dropdown = gr.Dropdown(choices=model_repos, value=model_repos[0])
    return model_repo_dropdown, load_log


# get list of GGUF models from HF repository
def get_gguf_model_names(model_repo: str) -> gr.Dropdown:
    repo_files = list(list_repo_tree(model_repo))
    repo_files = [file for file in repo_files if file.path.endswith('.gguf')]
    model_paths = [f'{file.path} ({file.size / 1000 ** 3:.2f}G)' for file in repo_files]
    model_paths_dropdown = gr.Dropdown(
        choices=model_paths,
        value=model_paths[0],
        label='GGUF model file',
        )
    return model_paths_dropdown


# delete model files and folders to clear space except for the current model gguf_filename
def clear_llm_folder(gguf_filename: str) -> None:
    if gguf_filename is None:
        gr.Info(f'The name of the model file that does not need to be deleted is not selected.')
        return
    if '(' in gguf_filename:
        gguf_filename = gguf_filename.split('(')[0].rstrip()
    for path in LLM_MODELS_PATH.iterdir():
        if path.name == gguf_filename:
            continue
        if path.is_file():
            path.unlink(missing_ok=True)
    gr.Info(f'All files removed from directory {LLM_MODELS_PATH} except {gguf_filename}')


# delete model folders to clear space except for the current model model_folder_name
def clear_embed_folder(model_repo: str) -> None:
    if model_repo is None:
        gr.Info(f'The name of the model that does not need to be deleted is not selected.')
        return
    model_folder_name = model_repo.replace('/', '_')
    for path in EMBED_MODELS_PATH.iterdir():
        if path.name == model_folder_name:
            continue
        if path.is_dir():
            rmtree(path, ignore_errors=True)
    gr.Info(f'All directories have been removed from the {EMBED_MODELS_PATH} directory except {model_folder_name}')


# ------------------------ YOUTUBE ------------------------

# function to check availability of subtitles, if manual or automatic are available - returns True and logs
# if subtitles are not available - returns False and logs
def check_subtitles_available(yt_video_link: str, target_lang: str) -> Tuple[bool, str]:
    video_id = yt_video_link.split('watch?v=')[-1].split('&')[0]
    load_log = ''
    available = True
    try:
        transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
        try:
            transcript = transcript_list.find_transcript([target_lang])
            if transcript.is_generated:
                load_log += f'Automatic subtitles will be loaded, manual ones are not available for video {yt_video_link}\n'
            else:
                load_log += f'Manual subtitles will be downloaded for the video {yt_video_link}\n'
        except NoTranscriptFound:
            load_log += f'Subtitle language {target_lang} is not available for video {yt_video_link}\n'
            available = False
    except TranscriptsDisabled:
        load_log += f'Invalid video url ({yt_video_link}) or current server IP is blocked for YouTube\n'
        available = False
    return available, load_log


# ------------- UPLOADING DOCUMENTS FOR RAG ------------------------

# extract documents (in langchain Documents format) from downloaded files
def load_documents_from_files(upload_files: List[str]) -> Tuple[List[Document], str]:
    load_log = ''
    documents = []
    for upload_file in upload_files:
        file_extension = f".{upload_file.split('.')[-1]}"
        if file_extension in LOADER_CLASSES:
            loader_class = LOADER_CLASSES[file_extension]
            loader_kwargs = {}
            if file_extension == '.csv':
                with open(upload_file) as csvfile:
                    delimiter = csv.Sniffer().sniff(csvfile.read(4096)).delimiter
                loader_kwargs = {'csv_args': {'delimiter': delimiter}}
            try:
                load_documents = loader_class(upload_file, **loader_kwargs).load()
                documents.extend(load_documents)
            except Exception as ex:
                load_log += f'Error uploading file {upload_file}\n'
                load_log += f'Error code: {ex}\n'
                continue
        else:
            load_log += f'Unsupported file format {upload_file}\n'
            continue
    return documents, load_log


# extracting documents (in langchain Documents format) from WEB links
def load_documents_from_links(

        web_links: str,

        subtitles_lang: str,

        ) -> Tuple[List[Document], str]:

    load_log = ''
    documents = []
    loader_class_kwargs = {}
    web_links = [web_link.strip() for web_link in web_links.split('\n') if web_link.strip()]
    for web_link in web_links:
        if 'youtube.com' in web_link:
            available, log = check_subtitles_available(web_link, subtitles_lang)
            load_log += log
            if not available:
                continue
            loader_class = LOADER_CLASSES['youtube'].from_youtube_url
            loader_class_kwargs = {'language': subtitles_lang}
        else:
            loader_class = LOADER_CLASSES['web']
            
        try:
            if requests.get(web_link).status_code != 200:
                load_log += f'Ссылка недоступна для Python requests: {web_link}\n'
                continue
            load_documents = loader_class(web_link, **loader_class_kwargs).load()
            if len(load_documents) == 0:
                load_log += f'No text chunks were found at the link: {web_link}\n'
                continue
            documents.extend(load_documents)
        except MissingSchema:
            load_log += f'Invalid link: {web_link}\n'
            continue
        except Exception as ex:
            load_log += f'Error loading data by web loader at link: {web_link}\n'
            load_log += f'Error code: {ex}\n'
            continue
    return documents, load_log


# uploading files and generating documents and databases
def load_documents_and_create_db(

        upload_files: Optional[List[str]],

        web_links: str,

        subtitles_lang: str,

        chunk_size: int,

        chunk_overlap: int,

        embed_model_dict: EMBED_MODEL_DICT,

        ) -> Tuple[List[Document], Optional[VectorStore], str]:

    load_log = ''
    all_documents = []
    db = None
    progress = gr.Progress()

    embed_model = embed_model_dict.get('embed_model')
    if embed_model is None:
        load_log += 'Embeddings model not initialized, DB cannot be created'
        return all_documents, db, load_log

    if upload_files is None and not web_links:
        load_log = 'No files or links selected'
        return all_documents, db, load_log

    if upload_files is not None:
        progress(0.3, desc='Step 1/2: Upload documents from files')
        docs, log = load_documents_from_files(upload_files)
        all_documents.extend(docs)
        load_log += log

    if web_links:
        progress(0.3 if upload_files is None else 0.5, desc='Step 1/2: Upload documents via links')
        docs, log = load_documents_from_links(web_links, subtitles_lang)
        all_documents.extend(docs)
        load_log += log

    if len(all_documents) == 0:
        load_log += 'Download was interrupted because no documents were extracted\n'
        load_log += 'RAG mode cannot be activated'
        return all_documents, db, load_log

    load_log += f'Documents loaded: {len(all_documents)}\n'
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
    )
    documents = text_splitter.split_documents(all_documents)
    documents = clear_documents(documents)
    load_log += f'Documents are divided, number of text chunks: {len(documents)}\n'

    progress(0.7, desc='Step 2/2: Initialize DB')
    db = FAISS.from_documents(documents=documents, embedding=embed_model)
    load_log += 'DB is initialized, RAG mode is activated and can be activated in the Chatbot tab'
    return documents, db, load_log


# ------------------ ФУНКЦИИ ЧАТ БОТА ------------------------

# adding a user message to the chat bot window
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
    chatbot.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message})
    return '', chatbot


# formatting prompt with adding context if DB is available and RAG mode is enabled
def update_user_message_with_context(

        chatbot: CHAT_HISTORY,

        rag_mode: bool,

        db: VectorStore,

        k: Union[int, str],

        score_threshold: float,

        context_template: str,

        ) -> Tuple[str, CHAT_HISTORY]:

    user_message = chatbot[-1]['content']
    user_message_with_context = ''

    if '{user_message}' not in context_template and '{context}' not  in context_template:
        gr.Info('Context template must include {user_message} and {context}')
        return user_message_with_context
        
    if db is not None and rag_mode and user_message.strip():
        if k == 'all':
            k = len(db.docstore._dict)
        docs_and_distances = db.similarity_search_with_relevance_scores(
            user_message,
            k=k,
            score_threshold=score_threshold,
            )
        if len(docs_and_distances) > 0:
            retriever_context = '\n\n'.join([doc[0].page_content for doc in docs_and_distances])
            user_message_with_context = context_template.format(
                user_message=user_message,
                context=retriever_context,
                )
    return user_message_with_context


# model response generation
def get_llm_response(

        chatbot: CHAT_HISTORY,

        llm_model_dict: LLM_MODEL_DICT,

        user_message_with_context: str,

        rag_mode: bool,

        system_prompt: str,

        support_system_role: bool,

        history_len: int,

        do_sample: bool,

        *generate_args,

        ) -> CHAT_HISTORY:

    llm_model = llm_model_dict.get('llm_model')
    if llm_model is None:
        gr.Info('Model not initialized')
        yield chatbot[:-1]
        return

    gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
    gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
    if not do_sample:
        gen_kwargs['top_p'] = 0.0
        gen_kwargs['top_k'] = 1
        gen_kwargs['repeat_penalty'] = 1.0
        
    user_message = chatbot[-1]['content']
    if not user_message.strip():
        yield chatbot[:-1]
        return

    if rag_mode:
        if user_message_with_context:
            user_message = user_message_with_context
        else:
            gr.Info((
                'No documents relevant to the query were found, generation in RAG mode is not possible.\n'
                'Or Context template is specified incorrectly.\n'
                'Try reducing searh_score_threshold or disable RAG mode for normal generation'
                ))
            yield chatbot[:-1]
            return

    messages = []
    if support_system_role and system_prompt:
        messages.append({'role': 'system', 'metadata': {'title': None}, 'content': system_prompt})

    if history_len != 0:
        messages.extend(chatbot[:-1][-(history_len*2):])

    messages.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message})
    stream_response = llm_model.create_chat_completion(
        messages=messages,
        stream=True,
        **gen_kwargs,
        )
    try:
        chatbot.append({'role': 'assistant', 'metadata': {'title': None}, 'content': ''})
        for chunk in stream_response:
            token = chunk['choices'][0]['delta'].get('content')
            if token is not None:
                chatbot[-1]['content'] += token
                yield chatbot
    except Exception as ex:
        gr.Info(f'Error generating response, error code: {ex}')
        yield chatbot[:-1]
        return