sergey21000 commited on
Commit
1730c92
·
verified ·
1 Parent(s): 814326d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +302 -174
app.py CHANGED
@@ -1,127 +1,63 @@
1
- from pathlib import Path
2
- from shutil import rmtree
3
- from typing import Union, List, Dict, Tuple, Optional
4
- from tqdm import tqdm
5
 
6
- import requests
7
  import gradio as gr
8
- from llama_cpp import Llama
9
-
10
-
11
- # ================== ANNOTATIONS ========================
12
-
13
- CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]]
14
- MODEL_DICT = Dict[str, Llama]
15
-
16
-
17
- # ================== FUNCS =============================
18
-
19
- def download_file(file_url: str, file_path: Union[str, Path]) -> None:
20
- response = requests.get(file_url, stream=True)
21
- if response.status_code != 200:
22
- raise Exception(f'Файл недоступен для скачивания по ссылке: {file_url}')
23
- total_size = int(response.headers.get('content-length', 0))
24
- progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
25
- progress_gradio = gr.Progress()
26
- completed_size = 0
27
- with open(file_path, 'wb') as file:
28
- for data in response.iter_content(chunk_size=4096):
29
- size = file.write(data)
30
- progress_tqdm.update(size)
31
- completed_size += size
32
- desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
33
- progress_gradio(completed_size/total_size, desc=desc)
34
-
35
-
36
- def download_gguf_and_init_model(gguf_url: str, model_dict: MODEL_DICT) -> Tuple[MODEL_DICT, bool, str]:
37
- log = ''
38
- if not gguf_url.endswith('.gguf'):
39
- log += f'The link must be a direct link to the GGUF file\n'
40
- return model_dict, log
41
-
42
- gguf_filename = gguf_url.rsplit('/')[-1]
43
- model_path = MODELS_PATH / gguf_filename
44
- progress = gr.Progress()
45
-
46
- if not model_path.is_file():
47
- progress(0.3, desc='Шаг 1/2: Loading GGUF model file')
48
- try:
49
- download_file(gguf_url, model_path)
50
- log += f'Model file {gguf_filename} successfully loaded\n'
51
- except Exception as ex:
52
- log += f'Error loading model from link {gguf_url}, error code:\n{ex}\n'
53
- curr_model = model_dict.get('model')
54
- if curr_model is None:
55
- log += f'Model is missing from dictionary "model_dict"\n'
56
- return model_dict, load_log
57
- curr_model_filename = Path(curr_model.model_path).name
58
- log += f'Current initialized model: {curr_model_filename}\n'
59
- return model_dict, log
60
- else:
61
- log += f'Model file {gguf_filename} loaded, initializing model...\n'
62
-
63
- progress(0.7, desc='Шаг 2/2: Model initialization')
64
- model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=True)
65
- model_dict = {'model': model}
66
- support_system_role = 'System role not supported' not in model.metadata['tokenizer.chat_template']
67
- log += f'Model {gguf_filename} initialized\n'
68
- return model_dict, support_system_role, log
69
-
70
-
71
- def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
72
- if user_message:
73
- chatbot.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message})
74
- return '', chatbot
75
-
76
-
77
- def bot_response_to_chatbot(
78
- chatbot: CHAT_HISTORY,
79
- model_dict: MODEL_DICT,
80
- system_prompt: str,
81
- support_system_role: bool,
82
- history_len: int,
83
- do_sample: bool,
84
- *generate_args,
85
- ):
86
-
87
- model = model_dict.get('model')
88
- if model is None:
89
- gr.Info('Model not initialized')
90
- yield chatbot
91
- return
92
-
93
- if len(chatbot) == 0 or chatbot[-1]['role'] == 'assistant':
94
- yield chatbot
95
- return
96
-
97
- messages = []
98
- if support_system_role and system_prompt:
99
- messages.append({'role': 'system', 'metadata': {'title': None}, 'content': system_prompt})
100
-
101
- if history_len != 0:
102
- messages.extend(chatbot[:-1][-(history_len*2):])
103
-
104
- messages.append(chatbot[-1])
105
-
106
- gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
107
- gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
108
- if not do_sample:
109
- gen_kwargs['top_p'] = 0.0
110
- gen_kwargs['top_k'] = 1
111
- gen_kwargs['repeat_penalty'] = 1.0
112
-
113
- stream_response = model.create_chat_completion(
114
- messages=messages,
115
- stream=True,
116
- **gen_kwargs,
117
  )
118
-
119
- chatbot.append({'role': 'assistant', 'metadata': {'title': None}, 'content': ''})
120
- for chunk in stream_response:
121
- token = chunk['choices'][0]['delta'].get('content')
122
- if token is not None:
123
- chatbot[-1]['content'] += token
124
- yield chatbot
125
 
126
 
127
  def get_system_prompt_component(interactive: bool) -> gr.Textbox:
@@ -130,52 +66,57 @@ def get_system_prompt_component(interactive: bool) -> gr.Textbox:
130
 
131
 
132
  def get_generate_args(do_sample: bool) -> List[gr.component]:
133
- visible = do_sample
134
  generate_args = [
135
- gr.Slider(label='temperature', value=GENERATE_KWARGS['temperature'], minimum=0.1, maximum=3, step=0.1, visible=visible),
136
- gr.Slider(label='top_p', value=GENERATE_KWARGS['top_p'], minimum=0.1, maximum=1, step=0.1, visible=visible),
137
- gr.Slider(label='top_k', value=GENERATE_KWARGS['top_k'], minimum=1, maximum=50, step=5, visible=visible),
138
- gr.Slider(label='repeat_penalty', value=GENERATE_KWARGS['repeat_penalty'], minimum=1, maximum=5, step=0.1, visible=visible),
139
  ]
140
  return generate_args
141
 
142
 
143
- # ================== VARIABLES =============================
 
 
144
 
145
- MODELS_PATH = Path('models')
146
- MODELS_PATH.mkdir(exist_ok=True)
147
- DEFAULT_GGUF_URL = 'https://huggingface.co/bartowski/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it-Q8_0.gguf'
148
 
149
- start_model_dict, start_support_system_role, start_load_log = download_gguf_and_init_model(
150
- gguf_url=DEFAULT_GGUF_URL, model_dict={},
151
- )
152
 
153
- GENERATE_KWARGS = dict(
154
- temperature=0.2,
155
- top_p=0.95,
156
- top_k=40,
157
- repeat_penalty=1.0,
158
- )
159
 
160
 
161
- # ================== INTERFACE =============================
 
162
 
163
  css = '''.gradio-container {width: 60% !important}'''
164
 
165
  with gr.Blocks(css=css) as interface:
166
- model_dict = gr.State(start_model_dict)
 
 
 
 
 
167
  support_system_role = gr.State(start_support_system_role)
168
-
169
- # ================= CHAT BOT PAGE ======================
170
- with gr.Tab('Chatbot'):
 
 
 
 
 
 
 
171
  with gr.Row():
172
  with gr.Column(scale=3):
173
  chatbot = gr.Chatbot(
174
  type='messages', # new in gradio 5+
175
- show_copy_button=True,
176
- bubble_full_width=False,
177
  height=480,
178
- )
179
  user_message = gr.Textbox(label='User')
180
 
181
  with gr.Row():
@@ -183,14 +124,14 @@ with gr.Blocks(css=css) as interface:
183
  stop_btn = gr.Button('Stop')
184
  clear_btn = gr.Button('Clear')
185
 
186
- system_prompt = get_system_prompt_component(interactive=support_system_role.value)
187
 
188
  with gr.Column(scale=1, min_width=80):
189
  with gr.Group():
190
- gr.Markdown('Length of message history')
191
  history_len = gr.Slider(
192
  minimum=0,
193
- maximum=10,
194
  value=0,
195
  step=1,
196
  info='Number of previous messages taken into account in history',
@@ -211,56 +152,243 @@ with gr.Blocks(css=css) as interface:
211
  inputs=do_sample,
212
  outputs=generate_args,
213
  show_progress=False,
214
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
 
216
  generate_event = gr.on(
217
  triggers=[user_message.submit, user_message_btn.click],
218
  fn=user_message_to_chatbot,
219
  inputs=[user_message, chatbot],
220
  outputs=[user_message, chatbot],
 
 
 
 
 
221
  ).then(
222
- fn=bot_response_to_chatbot,
223
- inputs=[chatbot, model_dict, system_prompt, support_system_role, history_len, do_sample, *generate_args],
 
 
 
 
 
224
  outputs=[chatbot],
225
  )
 
226
  stop_btn.click(
227
  fn=None,
228
  inputs=None,
229
  outputs=None,
230
  cancels=generate_event,
 
231
  )
 
232
  clear_btn.click(
233
- fn=lambda: None,
234
  inputs=None,
235
- outputs=[chatbot],
 
236
  )
237
 
238
- # ================= LOAD MODELS PAGE ======================
239
- with gr.Tab('Load model'):
240
- gguf_url = gr.Textbox(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
  value='',
242
- label='Link to GGUF',
243
- placeholder='URL link to the model in GGUF format',
 
 
 
 
 
 
244
  )
245
- load_model_btn = gr.Button('Downloading GGUF and initializing the model')
246
- load_log = gr.Textbox(
247
- value=start_load_log,
 
 
 
 
 
248
  label='Model loading status',
249
- lines=3,
250
  )
251
-
252
- load_model_btn.click(
253
- fn=download_gguf_and_init_model,
254
- inputs=[gguf_url, model_dict],
255
- outputs=[model_dict, support_system_role, load_log],
 
 
 
 
256
  ).success(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
  fn=get_system_prompt_component,
258
  inputs=[support_system_role],
259
  outputs=[system_prompt],
260
  )
261
 
262
- gr.HTML("""<h3 style='text-align: center'>
263
- <a href="https://github.com/sergey21000/gradio-llamacpp-chatbot" target='_blank'>GitHub Repository</a></h3>
264
- """)
265
-
266
- interface.launch(server_name='0.0.0.0', server_port=7860)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
 
 
 
2
 
 
3
  import gradio as gr
4
+ from langchain_core.vectorstores import VectorStore
5
+
6
+ from config import (
7
+ LLM_MODEL_REPOS,
8
+ EMBED_MODEL_REPOS,
9
+ SUBTITLES_LANGUAGES,
10
+ GENERATE_KWARGS,
11
+ )
12
+
13
+ from utils import (
14
+ load_llm_model,
15
+ load_embed_model,
16
+ load_documents_and_create_db,
17
+ user_message_to_chatbot,
18
+ update_user_message_with_context,
19
+ get_llm_response,
20
+ get_gguf_model_names,
21
+ add_new_model_repo,
22
+ clear_llm_folder,
23
+ clear_embed_folder,
24
+ get_memory_usage,
25
+ )
26
+
27
+
28
+ # ============ INTERFACE COMPONENT INITIALIZATION FUNCS ============
29
+
30
+ def get_rag_settings(rag_mode: bool, render: bool = True):
31
+ k = gr.Radio(
32
+ choices=[1, 2, 3, 4, 5, 'all'],
33
+ value=2,
34
+ label='Number of relevant documents for search',
35
+ visible=rag_mode,
36
+ render=render,
37
+ )
38
+ score_threshold = gr.Slider(
39
+ minimum=0,
40
+ maximum=1,
41
+ value=0.5,
42
+ step=0.05,
43
+ label='relevance_scores_threshold',
44
+ visible=rag_mode,
45
+ render=render,
46
+ )
47
+ return k, score_threshold
48
+
49
+
50
+ def get_user_message_with_context(text: str, rag_mode: bool) -> gr.component:
51
+ num_lines = len(text.split('\n'))
52
+ max_lines = 10
53
+ num_lines = max_lines if num_lines > max_lines else num_lines
54
+ return gr.Textbox(
55
+ text,
56
+ visible=rag_mode,
57
+ interactive=False,
58
+ label='User Message With Context',
59
+ lines=num_lines,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  )
 
 
 
 
 
 
 
61
 
62
 
63
  def get_system_prompt_component(interactive: bool) -> gr.Textbox:
 
66
 
67
 
68
  def get_generate_args(do_sample: bool) -> List[gr.component]:
 
69
  generate_args = [
70
+ gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
71
+ gr.Slider(minimum=0.1, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
72
+ gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
73
+ gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
74
  ]
75
  return generate_args
76
 
77
 
78
+ def get_rag_mode_component(db: Optional[VectorStore]) -> gr.Checkbox:
79
+ value = visible = db is not None
80
+ return gr.Checkbox(value=value, label='RAG Mode', scale=1, visible=visible)
81
 
 
 
 
82
 
83
+ # ================ LOADING AND INITIALIZING MODELS ========================
 
 
84
 
85
+ start_llm_model, start_support_system_role, load_log = load_llm_model(LLM_MODEL_REPOS[0], 'gemma-2-2b-it-Q8_0.gguf')
86
+ start_embed_model, load_log = load_embed_model(EMBED_MODEL_REPOS[0])
 
 
 
 
87
 
88
 
89
+
90
+ # ================== APPLICATION WEB INTERFACE ============================
91
 
92
  css = '''.gradio-container {width: 60% !important}'''
93
 
94
  with gr.Blocks(css=css) as interface:
95
+
96
+ # ==================== GRADIO STATES ===============================
97
+
98
+ documents = gr.State([])
99
+ db = gr.State(None)
100
+ user_message_with_context = gr.State('')
101
  support_system_role = gr.State(start_support_system_role)
102
+ llm_model_repos = gr.State(LLM_MODEL_REPOS)
103
+ embed_model_repos = gr.State(EMBED_MODEL_REPOS)
104
+ llm_model = gr.State(start_llm_model)
105
+ embed_model = gr.State(start_embed_model)
106
+
107
+
108
+
109
+ # ==================== BOT PAGE =================================
110
+
111
+ with gr.Tab(label='Chatbot'):
112
  with gr.Row():
113
  with gr.Column(scale=3):
114
  chatbot = gr.Chatbot(
115
  type='messages', # new in gradio 5+
116
+ show_copy_button=True,
117
+ bubble_full_width=False,
118
  height=480,
119
+ )
120
  user_message = gr.Textbox(label='User')
121
 
122
  with gr.Row():
 
124
  stop_btn = gr.Button('Stop')
125
  clear_btn = gr.Button('Clear')
126
 
127
+ # ------------- GENERATION PARAMETERS -------------------
128
 
129
  with gr.Column(scale=1, min_width=80):
130
  with gr.Group():
131
+ gr.Markdown('History size')
132
  history_len = gr.Slider(
133
  minimum=0,
134
+ maximum=5,
135
  value=0,
136
  step=1,
137
  info='Number of previous messages taken into account in history',
 
152
  inputs=do_sample,
153
  outputs=generate_args,
154
  show_progress=False,
155
+ )
156
+
157
+ rag_mode = get_rag_mode_component(db=db.value)
158
+ k, score_threshold = get_rag_settings(rag_mode=rag_mode.value, render=False)
159
+ rag_mode.change(
160
+ fn=get_rag_settings,
161
+ inputs=[rag_mode],
162
+ outputs=[k, score_threshold],
163
+ )
164
+ with gr.Row():
165
+ k.render()
166
+ score_threshold.render()
167
+
168
+ # ---------------- SYSTEM PROMPT AND USER MESSAGE -----------
169
+
170
+ with gr.Accordion('Prompt', open=True):
171
+ system_prompt = get_system_prompt_component(interactive=support_system_role.value)
172
+ user_message_with_context = get_user_message_with_context(text='', rag_mode=rag_mode.value)
173
+
174
+ # ---------------- SEND, CLEAR AND STOP BUTTONS ------------
175
 
176
  generate_event = gr.on(
177
  triggers=[user_message.submit, user_message_btn.click],
178
  fn=user_message_to_chatbot,
179
  inputs=[user_message, chatbot],
180
  outputs=[user_message, chatbot],
181
+ queue=False,
182
+ ).then(
183
+ fn=update_user_message_with_context,
184
+ inputs=[chatbot, rag_mode, db, k, score_threshold],
185
+ outputs=[user_message_with_context],
186
  ).then(
187
+ fn=get_user_message_with_context,
188
+ inputs=[user_message_with_context, rag_mode],
189
+ outputs=[user_message_with_context],
190
+ ).then(
191
+ fn=get_llm_response,
192
+ inputs=[chatbot, llm_model, user_message_with_context, rag_mode, system_prompt,
193
+ support_system_role, history_len, do_sample, *generate_args],
194
  outputs=[chatbot],
195
  )
196
+
197
  stop_btn.click(
198
  fn=None,
199
  inputs=None,
200
  outputs=None,
201
  cancels=generate_event,
202
+ queue=False,
203
  )
204
+
205
  clear_btn.click(
206
+ fn=lambda: (None, ''),
207
  inputs=None,
208
+ outputs=[chatbot, user_message_with_context],
209
+ queue=False,
210
  )
211
 
212
+
213
+
214
+ # ================= FILE DOWNLOAD PAGE =========================
215
+
216
+ with gr.Tab(label='Load documents'):
217
+ with gr.Row(variant='compact'):
218
+ upload_files = gr.File(file_count='multiple', label='Loading text files')
219
+ web_links = gr.Textbox(lines=6, label='Links to Web sites or YouTube')
220
+
221
+ with gr.Row(variant='compact'):
222
+ chunk_size = gr.Slider(50, 2000, value=500, step=50, label='Chunk size')
223
+ chunk_overlap = gr.Slider(0, 200, value=20, step=10, label='Chunk overlap')
224
+
225
+ subtitles_lang = gr.Radio(
226
+ SUBTITLES_LANGUAGES,
227
+ value=SUBTITLES_LANGUAGES[0],
228
+ label='YouTube subtitle language',
229
+ )
230
+
231
+ load_documents_btn = gr.Button(value='Upload documents and initialize database')
232
+ load_docs_log = gr.Textbox(label='Status of loading and splitting documents', interactive=False)
233
+
234
+ load_documents_btn.click(
235
+ fn=load_documents_and_create_db,
236
+ inputs=[upload_files, web_links, subtitles_lang, chunk_size, chunk_overlap, embed_model],
237
+ outputs=[documents, db, load_docs_log],
238
+ ).success(
239
+ fn=get_rag_mode_component,
240
+ inputs=[db],
241
+ outputs=[rag_mode],
242
+ )
243
+
244
+ gr.HTML("""<h3 style='text-align: center'>
245
+ <a href="https://github.com/sergey21000/chatbot-rag" target='_blank'>GitHub Repository</a></h3>
246
+ """)
247
+
248
+
249
+
250
+ # ================= VIEW PAGE FOR ALL DOCUMENTS =================
251
+
252
+ with gr.Tab(label='View documents'):
253
+ view_documents_btn = gr.Button(value='Show downloaded text chunks')
254
+ view_documents_textbox = gr.Textbox(
255
+ lines=1,
256
+ placeholder='To view chunks, load documents in the Load documents tab',
257
+ label='Uploaded chunks',
258
+ )
259
+ sep = '=' * 20
260
+ view_documents_btn.click(
261
+ lambda documents: f'\n{sep}\n\n'.join([doc.page_content for doc in documents]),
262
+ inputs=[documents],
263
+ outputs=[view_documents_textbox],
264
+ )
265
+
266
+
267
+ # ============== GGUF MODELS DOWNLOAD PAGE =====================
268
+
269
+ with gr.Tab('Load LLM model'):
270
+ new_llm_model_repo = gr.Textbox(
271
  value='',
272
+ label='Add repository',
273
+ placeholder='Link to repository of HF models in GGUF format',
274
+ )
275
+ new_llm_model_repo_btn = gr.Button('Add repository')
276
+ curr_llm_model_repo = gr.Dropdown(
277
+ choices=LLM_MODEL_REPOS,
278
+ value=None,
279
+ label='HF Model Repository',
280
  )
281
+ curr_llm_model_path = gr.Dropdown(
282
+ choices=[],
283
+ value=None,
284
+ label='GGUF model file',
285
+ )
286
+ load_llm_model_btn = gr.Button('Loading and initializing model')
287
+ load_llm_model_log = gr.Textbox(
288
+ value=f'Model {LLM_MODEL_REPOS[0]} loaded at application startup',
289
  label='Model loading status',
290
+ lines=6,
291
  )
292
+
293
+ with gr.Group():
294
+ gr.Markdown('Free up disk space by deleting all models except the currently selected one')
295
+ clear_llm_folder_btn = gr.Button('Clear folder')
296
+
297
+ new_llm_model_repo_btn.click(
298
+ fn=add_new_model_repo,
299
+ inputs=[new_llm_model_repo, llm_model_repos],
300
+ outputs=[curr_llm_model_repo, load_llm_model_log],
301
  ).success(
302
+ fn=lambda: '',
303
+ inputs=None,
304
+ outputs=[new_llm_model_repo],
305
+ )
306
+
307
+ curr_llm_model_repo.change(
308
+ fn=get_gguf_model_names,
309
+ inputs=[curr_llm_model_repo],
310
+ outputs=[curr_llm_model_path],
311
+ )
312
+
313
+ load_llm_model_btn.click(
314
+ fn=load_llm_model,
315
+ inputs=[curr_llm_model_repo, curr_llm_model_path],
316
+ outputs=[llm_model, support_system_role, load_llm_model_log],
317
+ ).success(
318
+ fn=lambda log: log + get_memory_usage(),
319
+ inputs=[load_llm_model_log],
320
+ outputs=[load_llm_model_log],
321
+ ).then(
322
  fn=get_system_prompt_component,
323
  inputs=[support_system_role],
324
  outputs=[system_prompt],
325
  )
326
 
327
+ clear_llm_folder_btn.click(
328
+ fn=clear_llm_folder,
329
+ inputs=[curr_llm_model_path],
330
+ outputs=None,
331
+ ).success(
332
+ fn=lambda model_path: f'Models other than {model_path} removed',
333
+ inputs=[curr_llm_model_path],
334
+ outputs=None,
335
+ )
336
+
337
+
338
+ # ============== EMBEDDING MODELS DOWNLOAD PAGE =============
339
+
340
+ with gr.Tab('Load embed model'):
341
+ new_embed_model_repo = gr.Textbox(
342
+ value='',
343
+ label='Add repository',
344
+ placeholder='Link to HF model repository',
345
+ )
346
+ new_embed_model_repo_btn = gr.Button('Add repository')
347
+ curr_embed_model_repo = gr.Dropdown(
348
+ choices=EMBED_MODEL_REPOS,
349
+ value=None,
350
+ label='HF model repository',
351
+ )
352
+
353
+ load_embed_model_btn = gr.Button('Loading and initializing model')
354
+ load_embed_model_log = gr.Textbox(
355
+ value=f'Model {EMBED_MODEL_REPOS[0]} loaded at application startup',
356
+ label='Model loading status',
357
+ lines=7,
358
+ )
359
+ with gr.Group():
360
+ gr.Markdown('Free up disk space by deleting all models except the currently selected one')
361
+ clear_embed_folder_btn = gr.Button('Clear folder')
362
+
363
+ new_embed_model_repo_btn.click(
364
+ fn=add_new_model_repo,
365
+ inputs=[new_embed_model_repo, embed_model_repos],
366
+ outputs=[curr_embed_model_repo, load_embed_model_log],
367
+ ).success(
368
+ fn=lambda: '',
369
+ inputs=None,
370
+ outputs=new_embed_model_repo,
371
+ )
372
+
373
+ load_embed_model_btn.click(
374
+ fn=load_embed_model,
375
+ inputs=[curr_embed_model_repo],
376
+ outputs=[embed_model, load_embed_model_log],
377
+ ).success(
378
+ fn=lambda log: log + get_memory_usage(),
379
+ inputs=[load_embed_model_log],
380
+ outputs=[load_embed_model_log],
381
+ )
382
+
383
+ clear_embed_folder_btn.click(
384
+ fn=clear_embed_folder,
385
+ inputs=[curr_embed_model_repo],
386
+ outputs=None,
387
+ ).success(
388
+ fn=lambda model_repo: f'Models other than {model_repo} removed',
389
+ inputs=[curr_embed_model_repo],
390
+ outputs=None,
391
+ )
392
+
393
+
394
+ interface.launch(server_name='0.0.0.0', server_port=7860) # debug=True