File size: 2,708 Bytes
fe4a4c9 48d0de5 fe4a4c9 70f1891 fe4a4c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import streamlit as st
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM, MBart50TokenizerFast, MBartForConditionalGeneration, AutoProcessor, AutoModel
from PIL import Image
import requests
from IPython.display import Audio
import sys
from PIL import Image
# Load Image to Text model
image_processor = AutoProcessor.from_pretrained("sezenkarakus/image-GIT-description-model-v3")
image_to_text_model = AutoModelForCausalLM.from_pretrained("sezenkarakus/image-GIT-description-model-v3")
# Load Translation model
ckpt = 'Narrativa/mbart-large-50-finetuned-opus-en-pt-translation'
tokenizer = MBart50TokenizerFast.from_pretrained(ckpt)
translation_model = MBartForConditionalGeneration.from_pretrained(ckpt)
tokenizer.src_lang = 'en_XX'
# Load Audio Model
audio_processor = AutoProcessor.from_pretrained("suno/bark-small")
audio_model = AutoModel.from_pretrained("suno/bark-small")
# Methods
def generate_caption(image):
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
generated_ids = image_to_text_model.generate(pixel_values=pixel_values, max_length=200)
generated_caption = image_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def translate(text):
inputs = tokenizer(text, return_tensors='pt')
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
try:
input_ids = input_ids.to('cuda')
attention_mask = attention_mask.to('cuda')
model = translation_model.to("cuda")
except:
print('No NVidia GPU, model performance may not be as good')
model = translation_model
output = model.generate(input_ids, attention_mask=attention_mask, forced_bos_token_id=tokenizer.lang_code_to_id['pt_XX'])
translated = tokenizer.decode(output[0], skip_special_tokens=True)
return translated
# Carregamento de imagens locais
img_url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
# img_url = 'https://farm4.staticflickr.com/3733/9000662079_ce3599d0d8_z.jpg'
# img_url = 'https://farm4.staticflickr.com/3088/5793281956_2a15b2559c_z.jpg'
# img_url = 'https://farm5.staticflickr.com/4073/4816939054_844feb0078_z.jpg'
image = Image.open(requests.get(img_url, stream=True).raw)
# Generate using models
# Generate text from image
caption = generate_caption(image)
print(caption)
# Translate
translated_caption = translate(caption)
print(translated_caption)
# # Generate Audio
# inputs = audio_processor(
# text=caption,
# return_tensors="pt",
# )
#
# speech_values = audio_model.generate(**inputs, do_sample=True)
#
# sampling_rate = audio_model.generation_config.sample_rate
# Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)
|