Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
import os | |
from threading import Thread | |
import spaces | |
import time | |
import subprocess | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3-small-128k-instruct", | |
torch_dtype="auto", | |
trust_remote_code=True, | |
) | |
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-small-128k-instruct",trust_remote_code=True,) | |
terminators = [ | |
tok.eos_token_id, | |
] | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
print(f"Using GPU: {torch.cuda.get_device_name(device)}") | |
else: | |
device = torch.device("cpu") | |
print("Using CPU") | |
model = model.to(device) | |
def chat(message, history,system_prompt, temperature, do_sample, max_tokens, top_k, repetition_penalty, top_p): | |
chat = [ | |
{"role": "assistant", "content": system_prompt} | |
] | |
for item in history: | |
chat.append({"role": "user", "content": item[0]}) | |
if item[1] is not None: | |
chat.append({"role": "assistant", "content": item[1]}) | |
chat.append({"role": "user", "content": message}) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer( | |
tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=terminators, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p | |
) | |
if temperature == 0: | |
generate_kwargs["do_sample"] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = "" | |
for new_text in streamer: | |
partial_text += new_text | |
yield partial_text | |
yield partial_text | |
demo = gr.ChatInterface( | |
fn=chat, | |
examples=[["Write me a poem about Machine Learning."], | |
["write fibonacci sequence in python"], | |
["who won the world cup in 2018?"], | |
["when was the first computer invented?"], | |
], | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
gr.Textbox("Perform the task to the best of your ability.", label="System prompt"), | |
gr.Slider( | |
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False | |
), | |
gr.Checkbox(label="Sampling", value=True), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider(1, 80, 40, label="Top K sampling"), | |
gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
], | |
stop_btn="Stop Generation", | |
title="Chat With Phi-3-small-128k-instruct", | |
description="[microsoft/Phi-3-small-128k-instruct](https://huggingface.co/microsoft/Phi-3-small-128k-instruct)", | |
css="footer {visibility: hidden}", | |
theme="NoCrypt/[email protected]", | |
) | |
demo.launch() | |