shaneperry0101
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("shaneperry0101/Health-Llama-3.2-1B")
|
8 |
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import time
|
3 |
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import transformers
|
6 |
+
import torch
|
|
|
7 |
|
8 |
|
9 |
+
global tokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
model = "shaneperry0101/Health-Llama-3.2-1B"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
13 |
+
pipeline = transformers.pipeline(
|
14 |
+
"text-generation",
|
15 |
+
model=model,
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
device_map="auto",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
)
|
19 |
|
20 |
+
def chat_response(message):
|
21 |
+
system_message="Welcome! You're now communicating with an AI model trained to assist with information about general health disease. Feel free to ask about causes, symptoms, medications, and treatment options!"
|
22 |
+
prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{message}[/INST]"
|
23 |
+
sequences = pipeline(
|
24 |
+
f'[INST] {prompt} [/INST]',
|
25 |
+
do_sample=True,
|
26 |
+
top_k=10,
|
27 |
+
num_return_sequences=1,
|
28 |
+
eos_token_id=tokenizer.eos_token_id,
|
29 |
+
max_length=500,
|
30 |
+
)
|
31 |
+
for seq in sequences:
|
32 |
+
bot_message = seq['generated_text'].replace(prompt, '').split('[/INST]')[-1]
|
33 |
+
|
34 |
+
return bot_message
|
35 |
+
|
36 |
+
with gr.Blocks() as demo:
|
37 |
+
chatbot = gr.Chatbot(label="Personal Health Assistant")
|
38 |
+
msg = gr.Textbox()
|
39 |
+
clear = gr.ClearButton([msg, chatbot])
|
40 |
+
|
41 |
+
def respond(message, chat_history):
|
42 |
+
bot_message = chat_response(message)
|
43 |
+
chat_history.append((message, bot_message))
|
44 |
+
time.sleep(2)
|
45 |
+
return "", chat_history
|
46 |
+
|
47 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
48 |
+
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
demo.launch()
|