shaneperry0101 commited on
Commit
c1a9489
·
verified ·
1 Parent(s): 1499c81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -54
app.py CHANGED
@@ -1,64 +1,51 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("shaneperry0101/Health-Llama-3.2-1B")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import time
3
 
4
+ from transformers import AutoTokenizer
5
+ import transformers
6
+ import torch
 
7
 
8
 
9
+ global tokenizer, pipeline
 
 
 
 
 
 
 
 
10
 
11
+ model = "shaneperry0101/Health-Llama-3.2-1B"
12
+ tokenizer = AutoTokenizer.from_pretrained(model)
13
+ pipeline = transformers.pipeline(
14
+ "text-generation",
15
+ model=model,
16
+ torch_dtype=torch.float16,
17
+ device_map="auto",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  )
19
 
20
+ def chat_response(message):
21
+ system_message="Welcome! You're now communicating with an AI model trained to assist with information about general health disease. Feel free to ask about causes, symptoms, medications, and treatment options!"
22
+ prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{message}[/INST]"
23
+ sequences = pipeline(
24
+ f'[INST] {prompt} [/INST]',
25
+ do_sample=True,
26
+ top_k=10,
27
+ num_return_sequences=1,
28
+ eos_token_id=tokenizer.eos_token_id,
29
+ max_length=500,
30
+ )
31
+ for seq in sequences:
32
+ bot_message = seq['generated_text'].replace(prompt, '').split('[/INST]')[-1]
33
+
34
+ return bot_message
35
+
36
+ with gr.Blocks() as demo:
37
+ chatbot = gr.Chatbot(label="Personal Health Assistant")
38
+ msg = gr.Textbox()
39
+ clear = gr.ClearButton([msg, chatbot])
40
+
41
+ def respond(message, chat_history):
42
+ bot_message = chat_response(message)
43
+ chat_history.append((message, bot_message))
44
+ time.sleep(2)
45
+ return "", chat_history
46
+
47
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
48
+
49
 
50
  if __name__ == "__main__":
51
  demo.launch()